1. (*) Give a direct proof for the following theorem: If \(n \) is perfect square, then \(n + 2 \) is not a perfect square.

2. (*) Use a direct proof to show that any odd integer is the difference of two squares.

3. Prove that for all real numbers \(x \) and \(y \), if \(x + y \geq 100 \), then \(x \geq 50 \) or \(y \geq 50 \).

4. Show that for any real number \(x \), \(x^2 - 3x + 2 > 0 \) if and only if \(x < 1 \) or \(x > 2 \).

5. For each of the following statements, provide an indirect proof by stating and proving the contrapositive of the given statement.

 (a) (*) For all integers \(m \) and \(n \), if \(mn \) is odd, then \(m, n \) are both odd.

 (b) For all integers \(m \) and \(n \), if \(m + n \) is even, then \(m, n \) are both even or both odd.

6. (*) Use “prove by cases” to show the following results:

 (a) If \(n \) is a natural number, then \(n^2 + n + 3 \) is odd.

 (b) If \(a \) and \(b \) are real numbers, \(|a - b| = |b - a| \)

7. (*) Show that \(x^5 - x^4 + x^3 - x^2 + x - 1 = 0 \) has an integral root.

8. (*, Challenging without the hint) Prove that when a white square and a black square are removed from an \(8 \times 8 \) chessboard, you can tile the remaining squares of the checkerboard using dominoes.

 \textit{Hint:} It is a fun problem! Try it without the hint. See Figure 2 only if you get stuck.

9. (*, Challenging) Let \(\alpha \) be an angle such that \(\alpha = \tan^{-1}(1/3) + \tan^{-1}(1/2) \) and \(0 \leq \alpha < 2\pi \).

 Show that \(\alpha = \pi/4 \) without using a calculator.
10. (*) Prove or disprove the following:

If \(p_1, p_2, \ldots, p_n \) are the \(n \) smallest primes, then \(k = p_1 p_2 \cdots p_{n+1} + 1 \) is prime.

11. Prove each of the following for all integer \(n \geq 1 \) by mathematical induction.

(a) (*)

\[
1 \times 3 + 2 \times 4 + 3 \times 5 + \cdots + n(n + 2) = \frac{n(n + 1)(2n + 7)}{6}.
\]

(b)

\[
\sum_{i=1}^{n} \frac{1}{i(i + 1)} = \frac{n}{n + 1}.
\]

12. (*) Use strong induction to prove that \(\sqrt{2} \) is irrational.

\textit{Hint:} Let \(P(n) \) be the statement that \(\sqrt{2} \neq n/b \) for any positive integer \(b \).

13. Show that if any 14 integers are selected from the set \(S = \{1, 2, 3, \ldots, 25\} \), there are at least two selected integers whose sum is 26.

14. (*) If 11 integers are selected from \(\{1, 2, 3, \ldots, 100\} \), prove that there are at least two, say \(x \) and \(y \), such that \(0 < |\sqrt{x} - \sqrt{y}| < 1 \).

15. (*) Challenging) Let \((a_1, a_2, a_3, a_4, a_5, a_6) \) and \((b_1, b_2, b_3, b_4, b_5, b_6) \) be two arrangements of the integers 1, 2, 3, 4, 5, 6. Consider the six pairs of differences \(|a_i - b_i| \). Is it possible that all of these differences are not the same?

Figure 2: A hint for Question 8.