
Theory of Computation
Tutorial IV

Speaker: Yu-Han Lyu
November 14, 2006

A Short History of
Computational Complexity

•http://people.cs.uchicago.edu/~fortnow/be
atcs/column80.pdf

•Lance Fortnow
–http://people.cs.uchicago.edu/~fortnow/
–http://weblog.fortnow.com/

Birth of
Computational Complexity

•1930~1965
–Recursion theory
–Computation theory

•Juris Hartmanis and Richard Stearns 1965
–On the Computational Complexity of

Algorithms, Transactions of the AMS

•Measure resources, time and memory, as
a function of the size of the input problem

Complexity in the ’60s

•Better simulations and hierarchies
•Relationship between time and space,

deterministic and nondeterministic
–Savitch’s Theorem

P versus NP

•Gödel to von Neumann letter in 1956.
•Cook showed Boolean formula

satisfiability NP-complete in 1971
•Levin also proved the same result
•Karp in 1972 showed several important

combinatorial problems were NP-complete
•Industry in the 1970’s of showing that

problems were NP-complete

Different Models

•As technology changes so does the notion
of “efficient computation”
–Randomized, Parallel, Distributed,

Approximation

•Complexity theorists tackle these issues
by defining models and proving
relationships between these classes and
more traditional models

Approximation complexity

•Decision problem -> Optimization problem
•Find the suboptimal solution
•Focus on NP-Complete problem

–Some problem cannot be approximated

•Complexity class
–PTAS, APX, NPO

Probabilistic complexity

•We can flip a coin in the algorithm, and
select the next action.

•Determining the primality of a number in
1976 by Miller and Rabin

•Probabilistic Turing machine
•Probability and approximation
•Probabilistic Class

–ZPP, BPP, PP

Circuit Complexity

•Computers are built from electronic
devices wired together in a design called a
digital circuit.

•Many circuit can processing in the same
time –parallel computing

•Complexity class
–NC, AC, P-Complete

Communication Complexity

•Alice has string x and Bob has string y,
how can they compute f(x, y) with the least
communication.

•Introduced by Yao in 1979
•Distributed algorithm
•Complexity class

–CC

Online Algorithms

•Online algorithm is one that can process
its input piece-by-piece, without having the
entire input available from the start

•New performance measures have to be
introduced
–Competitive analysis

•Complexity class
–none

The Role of Mathematics

•Discrete Mathematics
•Logic
•Probability

–Probabilistic method

•Algebra
–Coding theory

•Information theory

HW2 Problem 3

•Let A = {wtwR | w,t ∈{0,1}* and |w| = |t|}.
Prove that A is not a context-free language

•Assume p exists, let s=0p1p0p

–Then uvy can not in 1p, because when we
pump down, |w|<|t|

–Why is this argument false?

Homework 3

•Due
–2:10 pm, November 28, 2006 (before class)

•Problem 3 is the easiest (although it has *)
•Problems 2 and 4 are easier
•Problem 1 is harder
•Problem 5 is the hardest
•As simple as possible, but not simpler

Problem 1

•Show that single-tape TMs that cannot
write on the portion of the tape containing
the input string recognize only regular
languages.

•Prove that it equals to read-only
•Proof 1: Read-only TM’s index is finite
•Proof 2: Read-only TM is equal to 2DFA,

then prove 2DFA is equal to DFA

Problem 2

•Let A be a Turing-recognizable language
consisting of descriptions of Turing
machines, {<M1>, <M2>, …}, where every
Mi is a decider. Prove that some
decidable language D is not decided by
any decider Mi whose description appears
in A.

•Diagonalization technique

Problem 3

•Let PALDFA={<M>| M is a DFA that accepts
some string with more 1s than 0s}. Show
that PALDFA is decidable

•Context Free Language’s property

Problem 4

•Let C be a language. Prove that C is
Turing-recognizable if and only if a
decidable language D exists such that
C={x|∃y(<x,y>∈D)}

•If x∈C, then there exists a configuration
transition from initial to accept state.

•D is the verifier
•NP’s another definition!!

Problem 5

•Show that the problem of determining whether a
CFG generates all string in 1* is decidable. In
other words, show that {<G>| G is a CFG over
{0,1} and 1*⊆L(G)} is a decidable language.

•No Hint, but some facts. If G is a CFL and R is a
regular language, the following is undecidable:
–Is L(G) = L(R)?
–Is L(G) = T* for some alphabet T
–Is L(R)⊆L(G)

