Theory of Computation
Tutorial 1V

Speaker: Yu-Han Lyu
November 14, 2006

A Short History of
Computational Complexity

» http://people.cs.uchicago.edu/~fortnow/be
atcs/column80.pdf

 Lance Fortnow
— http://people.cs.uchicago.edu/~fortnow/
— http://weblog.forthow.com/

Birth of
Computational Complexity

¢ 1930~1965
— Recursion theory
— Computation theory
 Juris Hartmanis and Richard Stearns 1965

— On the Computational Complexity of
Algorithms, Transactions of the AMS

» Measure resources, time and memory, as
a function of the size of the input problem

Complexity in the *60s

e Better simulations and hierarchies

» Relationship between time and space,
deterministic and nondeterministic

— Savitch’s Theorem

P versus NP

Godel to von Neumann letter in 1956.

Cook showed Boolean formula
satisfiability NP-complete in 1971

Levin also proved the same result

Karp in 1972 showed several important
combinatorial problems were NP-complete

Industry in the 1970°s of showing that
problems were NP-complete

Different Models

 As technology changes so does the notion
of “efficient computation”

— Randomized, Parallel, Distributed,
Approximation

« Complexity theorists tackle these Issues
by defining models and proving

relationships between these classes and
more traditional models

Approximation complexity

Decision problem -> Optimization problem
-ind the suboptimal solution

~ocus on NP-Complete problem
— Some problem cannot be approximated

Complexity class
— PTAS, APX, NPO

Probabilistic complexity

We can flip a coin in the algorithm, and
select the next action.

Determining the primality of a number In
1976 by Miller and Rabin

Probabilistic Turing machine
Probability and approximation

Probabilistic Class
— ZPP, BPP, PP

Circuit Complexity

« Computers are built from electronic
devices wired together in a design called a
digital circuit.

* Many circuit can processing in the same
time — parallel computing

« Complexity class
— NC, AC, P-Complete

Communication Complexity

Alice has string x and Bob has string v,

how can they compute f(X, y) with the least
communication.

Introduced by Yao in 1979
Distributed algorithm

Complexity class
— CC

Online Algorithms

* Online algorithm Is one that can process
Its Input piece-by-piece, without having the
entire input available from the start

* New performance measures have to be
iIntroduced
— Competitive analysis

« Complexity class
— none

The Role of Mathematics

Discrete Mathematics
_0ogic

Probability

— Probabilistic method

Algebra
— Coding theory

Information theory

HW?2 Problem 3

e Let A ={wtwR |w,t €{0,1}* and |w| = [t|}.
Prove that A is not a context-free language
* Assume p exists, let s=0P1PQP

— Then uvy can not in 1P, because when we
pump down, |wi<|t|
— Why is this argument false?

Homework 3

Due
—2:10 pm, November 28, 2006 (before class)

Problem 3 is the easiest (although it has *)
Problems 2 and 4 are easler

Problem 1 is harder

Problem 5 is the hardest

As simple as possible, but not simpler

Problem 1

Show that single-tape TMs that cannot
write on the portion of the tape containing
the Input string recognize only regular

anguages.

Prove that it equals to read-only

Proof 1: Read-only TM’s Inc

Proof 2: Read-only TM is ec

ex IS finite
ual to 2DFA,

then prove 2DFA is equal to DFA

Problem 2

* Let A be a Turing-recognizable language
consisting of descriptions of Turing
machines, {<M;>, <M,>, ...}, where every
M. Is a decider. Prove that some
decidable language D is not decided by
any decider M. whose description appears
in A.

* Diagonalization technique

Problem 3

» Let PAL,,={<M>| M is a DFA that accepts
some string with more 1s than Os}. Show

that PAL,-, IS decidable
» Context Free Language’s property

Problem 4

Let C be a language. Prove that C is
Turing-recognizable if and only If a
decidable language D exists such that
C={x[3,(<x,y>€D);}

If x&e C, then there exists a configuration
transition from initial to accept state.

D is the verifier

NP’s another definition!!

Problem 5

« Show that the problem of determining whether a
CFG generates all string in 1* Is decidable. In
other words, show that {<G>| G Is a CFG over
{0,1} and 1*< L(G)} Is a decidable language.

* No Hint, but some facts. If Gisa CFL and R is a
regular language, the following is undecidable:
— 1s L(G) = L(R)?

— Is L(G) = T* for some alphabet T
— Is L(R)S L(G)

