Theory of Computation Tutorial III

Speaker: Yu-Han Lyu

October 31, 2006

Minimum Pumping Length

- 0001*
 - 4, because 000 can't be pumped
- 0001
 - **-**??

Stochastic Context Free Grammar

- Each production is augmented with a probability
- Like Hidden Markov Model
 - Learning
- Application
 - Natural language processing
 - RNA

Context Sensitive Grammar

- Context Free Grammar
 - Left-hand side must be non-terminal
- $aA \rightarrow aB$
 - Ihs length is smaller than or equal to rhs
- Example: {aⁿbⁿcⁿ|n≥1}
 - $-S \rightarrow aSBc|abc|$
 - $-cB \rightarrow Bc$
 - $-bB \rightarrow bb$

Linear Bounded Automata

- Like Turing machine, but the tape length is not infinite
- Tape length is linear to the input length
- LBA and DLBA are not equivalent
 - DLBA: deterministic subset of LBA
- LBA = CSG
- Chapter 5

Unrestricted Grammar

- $aA \rightarrow aB$
 - No length limitation
- Unrestricted Grammar = Recognizable

Chomsky Hierarchy

Type	Grammar	Language	Automaton	
Type-3	Linear	Regular	NFA	NFA=DFA
Type-2	Context Free	Context Free	PDA	PDA ≠ DPDA
Type-1	Context Sensitive	Context Sensitive	LBA	LBA ≠ DLBA
		Recursive	Decider	
Type-0	Unrestricted	Recursive Enumerable	Turing Machine	TM=DTM

Closure properties

Closed?	\bigcup		complement	concatenation	star
Regular	Y	Y	Y	Y	Y
Context Free	Y	N	N	Y	Y
Context Sensitive	Υ	Y	Y	Y	Y
Recursive	Y	Y	Y	Y	Y
Recursive Enumerable	Y	Y	N	Y	Y

Decidability

Decidable?	Accept	Empty	Equal
Regular	Y	Y	Y
Context Free	Y	Y	N
Context Sensitive	Y	N	N
Recursive Enumerable	N	N	N

Question

- Let M₁ be an NTM. Suppose that M₁ is a decider for language L. If we exchange the accept state and reject state and get another NTM M₂, is it a decider for L's complement?
 - No
 - If M₂ accepts x, it means that there exists one path to M₁'s reject state
 - But L's complement means that there is no path to accept state

Chomsky

 Institute Professor Emeritus of linguistics at the Massachusetts Institute of Technology

Complexity

- Computational Complexity
 - Time, Space,
- Information Entropy
 - Complexity in data
- Descriptive Complexity
 - Complexity to specify the data
 - Kolmogorov Complexity (6.4)
 - Algorithmic Information Theory
 - An Introduction to Kolmogorov Complexity and Its Applications, by Ming Li and Paul Vitanyi

Logic & Recursion theory

- 1931 Godel Incompleteness
- 1933 Godel developed the ideas of computability and recursive functions
- Lambda calculus by Church and Kleene
- 1936 Turing
 Machine by Turing,
 Formulation 1 by Post

Syntactic/	Semantic/	
Logic	Automata	
Primitive Recursive		
Total Recursive	Recursive	
Partial	Recursive	
Recursive	Enumerable	

Reference 1

- Computational Complexity
- Christos H. Papadimitriou
- 1994~

Reference 2

- Complexity Theory: A Modern Approach
 - Sanjeev Arora and Boaz Barak
 - http://www.cs.princeton.edu/theory/complexity
 - First part covers the Papadimitriou's book
- Computational Complexity: A Conceptual Perspective
 - Oded Goldreich
 - http://www.wisdom.weizmann.ac.il/~oded/ccbook.html
- Not published

Reference 3

- Complexity Zoo
 - http://qwiki.caltech.edu/wiki/Complexity_Zoo
- Wikipedia
 - http://en.wikipedia.org/wiki/Main_Page

- Every tree with height k has at most 2^k-1 internal nodes.
- 2^b derivation steps → height > b
- At least one variable occurs twice
- Pumping lemma...

- If we read a 'a'
 - Eliminate 2b
 - Push 2a
- If we read a 'b'
 - Eliminate 3a
 - Push 3b
- After read input
 - If stack isn't empty then accept

- $C = \{xy \mid x, y \in \{0,1\}^* \text{ and } |x| = |y|, x \neq y\}$
- First half and second half are different in some position
- S→AB|BA
- A→XAX|0
- B→XBX|1
- X→0|1

- $A = \{wtw^R \mid w, t \in \{0,1\}^* \text{ and } |w| = |t|\}$
- $S=0^{2p}0^{p}1^{p}0^{2p}$
- If v and y are all 0 or all 1
 - Impossible
- If v is 0 and y is 1
 - Impossible
- If v is 1 and y is 0
 - Impossible

- An internal node is marked if it has at least two children, and both of them contain a marked leaf as a descent
- Prove by induction that if every path of T contains at most i marked node, then T has at most bⁱ marked leaves
- K=b|V|+1

- z=a^pb^pc^{p+p!}=uvxyz
- $s_1=uv^2xy^2z$, $\#_b(s) \le 2p < p+p! \le \#_c(s)$
 - #a(s) = #b(s)
 - v=a^t and x=b^t for some t
- Let n=p!/t + 1
 - $-s_1'=uv^nxy^nz=a^{p+p!}b^{p+p!}c^{p+p!}$