
Savitch’s Theorem
Theorem: Let f: N  R be a function, with

f(n) ¸ n. Then,

NSPACE(f(n)) µ SPACE((f(n))2)

Proof: Suppose language A can be decided
by an NTM in k f(n) space, for some
constant k. We shall show that it can be
decided by a DTM in O((f(n))2) space



Savitch’s Theorem (2)

…A naïve approach is to simulate all
branches of the NTM’s computation, one
by one, using DTM. To do so, we need to
keep track of which branch we are testing
(that is, the choices made in each branch).

•Unfortunately, a branch in the NTM may
have 2O(f(n)) steps (though it uses O(f(n))
space), so that we may need 2O(f(n)) space…
NOT GOOD…



Savitch’s Theorem (3)

…Instead, we solve the yieldability problem,
such that given two configurations c1 and
c2 of the NTM N, we want to decide
whether c2 can be yielded from c1, in some
number of steps

For this purpose, let us define a recursive
function, called CAN_YIELD(c1,c2,t), the
checks if c1 can yield c2 in t steps as
follows (next slide)



Function CAN_YIELD(c1,c2,t) {
1. If t = 1, test whether c1 = c2 or

whether c1 yields c2 in one step using
the rule of NTM N. Accept if either
test succeeds; Reject otherwise.

2. For each config cm using k f(n) space:
a. Run CAN_YIELD(c1,cm,t/2)
b. Run CAN_YIELD(cm,c2,t/2)
c. If both accept, accept

3. If haven’t accept yet, reject
}



Savitch’s Theorem (4)

We modify N a bit, and define some terms:
•We modify N so that when it accepts, it

clears the tape and moves the tape head
to leftmost cell. We denote such a
configuration caccept

•Let cstart = start configuration of N on w
•Select a constant d such that N has at

most 2d f(n) configurations (which is the
upper bound of N’s running time)



Savitch’s Theorem (5)

Based on this new N, there exists a DTM M
that simulates N as follows:

M = “On input w,
1. Output the result

CAN_YIELD(cstart,caccept, 2d f(n) ) ’’

Question: What is space usage of M?



Savitch’s Theorem (6)

•When CAN_YIELD invokes itself
recursively, it needs to store c1, c2, t, and
the configuration it is testing (so that
these values can be restored upon return
from the recursive call)

•Each level of recursion thus uses O(f(n))
space

•Height of recursion: df(n) = O(f(n))

 Total space = O((f(n))2)


