
CS5371
Theory of Computation

Lecture 9: Automata Theory VII
(Pumping Lemma, Non-CFL,

DPDA PDA)

Objectives

•Introduce the Pumping Lemma for
CFL

•Show that some languages are non-
CFL

•Discuss the DPDA, which is a PDA
with “deterministic transition
function”

Pumping Lemma for CFL

Theorem: If L is a context-free
language, then there is a number p
(pumping length) where, if s is any
string in L of length at least p, we can
find u,v,x,y,z such that s = uvxyz and
–For each i 0, uvixyiz is in L
–|vy| 0, and
–|vxy| p

Proof of Pumping Lemma

•Let b be the maximum branching
factor in the parse tree of any string
in L (that is, the right side of any
rule has at most b terminals and
variables)

•Let p = b|V|+1

•What is the minimum height of the
parse tree for a string longer than p?

Proof of Pumping Lemma (2)

•The height of the tree is at least |V|
+ 1 There is a path in tree with
length |V|+2 nodes
–Only one can be terminal, so that there

are |V|+1 variable on the path
•What does that mean?

–Some variable appear at least two times!

Proof of Pumping Lemma (3)

S

R

R

u zxv y

Proof of Pumping Lemma (4)

•At this point, we note that uvixyiz is in
L for any i 0
–From the parse tree, we know that R can

derive x, and R can derive vxy
–As S derives uRz, S can derive uxz
–As S derives uvRyz, S can derive uvvxyyz

•To complete the prove, we need to show
–|vy| 0, and
–|vxy| p

•The current construction cannot, but…

Proof of Pumping Lemma (5)

•If we let the above parse tree to be the
smallest among all that generates the
string, and

•If we use the longest path from S to any
leaf, and R be the repeating variable from
the lowest |V|+1 in this path

•Then,
–|vy| 0 (why?) and
–|vxy| p (why?)

Why is |vy| 0?
•Suppose on the contrary that |vy| = 0.

This occurs when both v and y are
empty strings

•If this happen, we can replace the
subtree rooted at R that generates
vxy by the subtree rooted at R that
generates x
–Resulting parse tree also geneartes

uvxyz, but it has fewer nodes
contradiction occurs (why?)

Why is |vxy| p?
•R is chosen from the lowest |V| + 1

variable
•The height of the subtree at R that

generates vxy has at most |V|+1 (why?)
–It has at most b|V|+1 leaves

–Thus, it can generate at most p
characters (as p = b|V|+1)

Recall: b = maximum
branching factor

Non-CFL (example 1)

Theorem: The language
A = {anbncn | n 0}

is not a context-free language.

How to prove?
Use pumping lemma on apbpcp

Proof (example 1)

•We apply pumping lemma on apbpcp, what
can be the corresponding vxy?
–Case 1: if both v and y contain only one type of

char
–Case 2: if either v or y contain more than one

type of char

•In both cases, uvvxyyz cannot be in A
(why?)

•Thus, a string longer than p in A does not
satisfy pumping lemma A is not CFL

Non-CFL (example 2)

Theorem: The language
B = {aibjck | 0 i j k}

is not a context-free language.

How to prove?
Use pumping lemma on apbpcp

Proof (example 2)
•We apply pumping lemma on apbpcp, what

can be the corresponding vxy?
–Case 1: if both v and y contain only one type of

char
–Case 2: if either v or y contain more than one

type of char
•We can guarantee that for Case 2, uvvxyyz

cannot be in B
•However, for Case 1, if v = b, y = c, then

the string uvvxyyz can always be in B…(so,
how to get a contradiction??)

Proof (example 2)

•We can divide Case 1 into two subcases:
–When char ‘a’does not appear in v or y
–When char ‘a’appears in v or y

•For the first subcase, uxz (here, we pump
down the string) cannot be in B (why?)

•For the second subcase, uvvxyyz (here, we
pump up the string) cannot be in B (why?)

•Thus, a string longer than p in B does not
satisfy pumping lemma B is not CFL

Non-CFL (example 3)

Theorem: The language
C = {ww | w in {0,1}*}

is not a context-free language.

How to prove?
Use pumping lemma on 0p1p0p1p

Proof (example 3)

•We apply pumping lemma on 0p1p0p1p,
what can be the corresponding vxy?
–Case 1: vxy appears in the first half
–Case 2: vxy appears in the second half
–Case 3: vxy includes the middle ‘10’

•For Cases 1 or 2, uvvxyyz not in C (why?)
•For Case 3, u must start with 0p, and z

must end with 1p (because |vxy| p and
vxy includes the middle ‘10’). Then, uxz
cannot be in C (why?)

Is CFL closed
under complement?

•What is the complement of A =
{anbncn | n 0}?

•They include:
–strings containing ba, ca, or cb;
–strings aibjck with i j or j k

•Thus, the complement of A is context
free. (why??)

•As A is not context free, what can we
conclude?

Assume = {a, b, c}

Is CFL closed
under intersection?

•Is A = {anbncm | n,m 0} a CFL?
•Is B = {ambncn | n,m 0} a CFL?
•What is the intersection of A and B?

Is it a CFL?
•What can we conclude?

DPDA
•Roughly speaking, a deterministic PDA is a

PDA with only one choice at any time
•Precisely, for current state q, input char a,

and stack symbol s,
(1) |(q, a, s)| = 1 for all a 2 and

|(q, , s)| = 0, or
(2) |(q, a, s)| = 0 for all a 2 and

|(q, , s)| = 1
•Then, at the end of reading the input, the

PDA can be in at most 1 state

DPDA (2)

•We also need to assume that all input
strings for DPDA ends with a special
char # (which does not appear at
other places in the input string)
–Since, unlike PDA, we cannot guess the

end of the input string

DPDA = PDA??
•Suppose L is a language recognized by a

DPDA D. Will the complement of L be
recognized by some DPDA D’?

•Yes (…rough idea only…)
–Consider all the states that correspond to

the end of reading the input strings (which
has an incoming transition arrow labeling
with (#, b c)). If it is accept/reject
state in D, reverse it in D’

DPDA = PDA??

•As language recognized by DPDA is
closed under complement, but
language recognized by PDA (that is,
CFL) is not closed, we have

DPDA PDA
in terms of descriptive power.

What we have learnt so far?

•PDA = CFG
–Prove by Construction

•Properties of CFG (Ambiguous, CNF)
–More on these in Homework 2

•Pumping Lemma
–Prove by Construction (using Parse Tree)

•Existence of non-CFL
•DPDA PDA

Language Hierarchy

Set of Regular
Language

Set of Context-
Free Language

Set of Languages (= set of “set of strings”)

{0x1y}
{0n1n}

{0n1n2n}

{w with even |w|}

{w | w = wR}

{ww}

Next Time

•Turing Machine
–A even more power computer

