
CS5371
Theory of Computation

Lecture 8: Automata Theory VI
(PDA, PDA = CFG)

•Introduce Pushdown Automaton (PDA)
•Show that PDA = CFG

–In terms of descriptive power

Objectives

Pushdown Automaton (PDA)
•Roughly speaking, PDA = NFA + stack with

unlimited size

•How does a PDA operate?
•In each step, it can read a character from

the input string, can pop (remove) a
symbol from the stack

•Then, depending on the character and the
symbol, the PDA enters another state and
can push (place) a symbol to the stack

A stack is a “last in, first out”storage device

Stack is powerful
•Recall that an NFA cannot recognize

the language {0n1n | n 0}
•However, a PDA can do so (informally):

–Read the characters from input. For any
0 it reads, push it onto the stack. As
soon as 1s are seen**, pop a 0 off the
stack for each 1 read. Accept the
string if the stack is just empty after
the last 1 is read; Reject the string
otherwise

** at this point, if we read a 0 again, we reject
the string immediately.

PDA (Formal Definition)

•A PDA is a 6-tuple (Q, , , , q0, F)
–Q is a finite set of states
–is a finite set of characters
–is a finite set of stack symbols
–is the transition function of the form:

: Q x ’x ’ 2Q x ’,
where ’= [{} and ’= [{}

–q0 is the start state
–F is the set of accept states

Acceptance by PDA
•A PDA M = (Q, , , , q0, F) accepts the

input string w if
–w can be written as w1 w2…wm where wi in ’,
–there exist states r0, r1, …, rm in Q, and
–there exist strings s0, s1, …, sm in *
satisfying the following three conditions:
(see next slide)

Intuitively, ri denotes the sequence of states visited by
the PDA, and si denotes the corresponding contents in
the stack (reading from top to bottom)

Acceptance by PDA (cont.)
•Condition 1: r0 = q0, s0 = 

•Condition 2: For i = 0, 1, …, m-1, we have
(ri+1, b) 2 (ri, wi+1, a),

where si = at, si+1 = bt for some a, b in ’

•Condition 3: rm 2 F

This ensures that PDA starts at q0, with an empty stack

This ensures that PDA moves properly according to the
state, the input character, and the stack

This ensures PDA accepts only when the PDA is in an
accept state after processing the whole input string

PDA (example 1)

•The following state diagram gives the
PDA that recognizes {0n1n | n 0}.

The notation a, b c means that the machine reads a
from input, replace b by c from the top of stack. That
is, pop b then push c.

, $ 
1, 0

0,  0

1, 0

, $

PDA (example 1)

•Some points to notice:
–The formal definition of PDA does not allow us

to test if the stack is empty. The previous PDA
tries to get the same effect by first placing $
to the stack, so that if it ever sees $ again, it
knows the stack is empty

–Similarly, the PDA cannot test if the input has
all been processed. The previous PDA can have
the same effect because it can stay at the
accept states only at the end of the input

PDA (example 1)

•We can also write the formal definition of
the previous PDA, call it M, as follows:
M = ({q1,q2,q3,q4}, {0,1}, {0,$}, , q1, {q1,q4}),

•And is given by
(q1, , ) = { (q2, $) }
(q2, 0, ) = { (q2, 0) }
(q2, 1, 0) = { (q3, ) }
(q3, 1, 0) = { (q3, ) }
(q3, , $) = { (q4, ) }

PDA (example 2)

•Give a PDA that recognizing the language
{ aibjck | i,j,k 0 and i=j or i=k }

How to construct it?
•First, for each ‘a’read, we should push it

onto the stack (for later matching)
•Then, we guess whether ‘a’should be

matched with ‘b’or matched with ‘c’

We can guess because of the non-deterministic
nature of PDA

PDA (example 2)

, $ 

a,  a

, $

,  ,  , $ 

b,  c, a 

, 

c, b, a

PDA (example 3)

Give a PDA recognizing { wwR | w in {0,1}* }

How to construct it?
•First, the PDA should match the first

character with the last character, the second
character with the second last character, and
so on…So, we push each character that is read
to the stack in case it will be matched later

•At each point, we guess the middle of the
string has been reached. We match the
remaining characters with those stored in the
stack (how?)

CFG = PDA

Theorem: (1) If a language is generated by a
CFG, it can be recognized by some PDA. (2)
If a language is recognized by a PDA, it can
be generated by some CFG.

Proof: We shall prove both statements by
construction.

Proof of (1)
(1) If a language is generated by a CFG, it

can be recognized by some PDA.

•Let L be a language generated by a CFG G.
We show how to convert G into an
equivalent PDA.

•Our PDA will do the following:
–For an input string w, it can determine whether

there is a derivation for w by G

Recall that a derivation for w = a sequence of
substitutions in the grammar that generates w

Proof of (1)
•The difficulty in testing whether

there is a derivation for w is to
figure out which substitutions to
make
–PDA can do so by guessing the sequence

of correct substitutions

Proof of (1)
•Informally, our PDA does the following:

–Place the mark symbol $ and then the
start variable S (of G) on the stack

–Repeat
•If the top of stack is a variable, say A, guess a

rule A u and substitute A by the string u
•If the top of stack is a terminal, say a, read

the next symbol from the input and compare it
with a. If they match, repeat. Otherwise,
reject this branch of non-determinism

•If the top of stack is $, enter the accept
state

An Example Run

Input: 1100
CFG: S  SS | 1S0 | 10

1100

$
S

At the beginning

1100 1

$
0
S

PDA uses the rule
S  1S0

100

$
0
S

Input char is
matched

Next char Next charNext char

An Example Run (cont.)

Input: 1100
CFG: S  SS | 1S0 | 10

100 1

$
0
0

PDA uses the rule
S  10

00

$
0
0

Input char is
matched

0

$
0

Input char is
matched

Next char Next charNext char

An Example Run (cont.)

Input: 1100
CFG: S  SS | 1S0 | 10

$
Whole input string

is processed
The $ in the top of stack tells
PDA the stack is empty. PDA

accepts the string

Next char Next char

Another Example Run

Input: 1100
CFG: S  SS | 1S0 | 10

1100

$
S

At the beginning

1100

$
0
1

PDA uses the rule
S  10

100

$
0

Input char is
matched

Next char Next charNext char

Another Example Run (cont.)

Input: 1100
CFG: S  SS | 1S0 | 10

100

$
0

Input char cannot match
top of stack. What will

PDA do?

It stops exploring this
branch of computation

Next char

Implementation Details
•We can see that, an input string w is

accepted by our PDA if and only there is a
derivation from S to w

•What remains is to show that such a PDA
can be constructed

•Pushing $, pushing S, or matching input
chars with terminals in the stack is easy

•Difficulty: How to replace a variable in the
top of stack by right side of a
corresponding rule? (E.g., top of stack is A
and we have with a rule A  xyz. How to
replace A by xyz?) By using dummy states

Using dummy states

, A z

,  y

,  x

Using two dummy states to
replace A by xyz at the top

of the stack

, A xyz

A shorthand notation

PDA for Proof of (1)

start

,  S$

, A u for rule A u

a, a  for terminal a

, $

shorthand notation used here

Example of Conversion

•Convert the following CFG into an
equivalent PDA

S  aTb | b
T  Ta | 

Proof of (2)
(2) If a language is recognized by a PDA,

it can be generated by some CFG.

• We show how to convert a PDA into an
equivalent CFG.

• Let L be the language, and P be the PDA
recognizing L.

Proof of (2)
•We first change P slightly so that:

–It has a single accept state, qaccept

–It empties the stack before accept
–Each transition either pushes a symbol on

the stack, or pops a symbol off the stack,
but not both

For the third change, we replace each transition in P that

(i) pushes and pops at the same time with a two transition
sequence that goes through a new state,

(ii) neither pushes or pops with a two transition sequence that
pushes then pops a dummy stack symbol

first and
second
changes
are easy

Proof of (2)

•Next, for each pair of states p, q in P,
we create a CFG variable Apq. Our
target is to make Apq generate
exactly those strings that can bring P
from p with an empty stack to q with
an empty stack

•How to do so?

Creating Apq

•Note that PDA can get from p (with an
empty stack) to q (with an empty stack) in
two ways:

•The stack gets empty before reaching q
–This implies we get from p to some r (with

empty stack) and then to q

•The stack never gets empty before
reaching q
–This implies at p, we push some char t in stack,

and then at q, we pop the same char t

Creating Apq (cont.)

•For each p, q, r, add the rule
Apq AprArq

•For each p, q, r, s with (r, t) 2 (p, a, )
and (q, ) 2 (s, b, t), add the rule

Apq aArsb

That is, if we can get from p to r, and also from r to q, then we can
get from p to q (Here, all starts and ends are with empty stack)

That is, if we can get from p to r by reading a and pushing t, and
we can get from s to q by reading b and popping t, then, if we
start with p with an empty stack, we can reach q with an empty
stack by reading a, going from r to s, then reading b.

Creating Apq (cont.)

•For each p, we also add the rule
App

That is, if we can get from p to p by reading nothing

If Apq really generates exactly those strings
that brings P from p to q (with empty stacks),
then what is Aqstart, qaccept

?

where qstart denotes the start state of PDA

Proof of (2)
•So, in our grammar, we will have all the rules

Apq and set Aqstart, qaccept
as the start variable

•What remains is to prove Apq generates
exactly those strings that brings P from p to
q (with empty stacks)

•That is, we need to prove
–If Apq generates x, x brings P from p to q (with

empty stacks)
–If x brings P from p to q (with empty stacks, Apq

generates x

Exercise: Prove the above two statements (Hint: by induction)

Next Time

•Pumping Lemma for CFL
•Non-CFL
•Discuss DPDA, which is DFA + stack

–Does it have same power as PDA?

