CS5371 Theory of Computation Lecture 23: Complexity VIII (Space Complexity)

Objectives

- Introduce Space Complexity
- Savitch's Theorem
- The class PSPACE

Space Complexity

Definition [for DTM]: Let M be a DTM that halts on all inputs. The space complexity of M is a function $f: N \rightarrow N$, where f(n) is the maximum number of tape cells that M scans on any input of length n.

If the space complexity of M is f(n), we say M runs in space f(n)

Space Complexity (2)

Definition [for NTM]: Let M be an NTM that all branches halt on all inputs. The space complexity of M, f(n), will be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

Again, if the space complexity of M is f(n), we say M runs in space f(n)

Space Complexity Classes

Definition: Let f: N → R be a function. We define two notation for describing space complexity classes as follows:

SPACE(f(n)) = { L | L is a language decided
by a DTM M that runs in f(n) space }

NSPACE(f(n)) = { L | L is a language decided by an NTM M that runs in f(n) space }

Example 1

Theorem: SAT is in SPACE(n)

Proof: The following DTM M decides SAT:

- $M = "On input \langle F \rangle,$
- 1. For each truth assignment,
 - (a) Evaluate F on that truth assignment
- 2. If F is evaluated to TRUE in some case, accept. Otherwise, reject."
- The space usage is O(length of $\langle F \rangle$). Why??

Example 2

Let ALL_{NFA} be the language { $\langle M \rangle$ | M is an NFA and L(M) = Σ^* }

Theorem: ALL_{NFA} is in co-NSPACE(n). I.e., the complement of ALL_{NFA} is in NSPACE(n).

Note that we still do not know if ALL_{NFA} is in NP, or in co-NP.

Proof Idea: We shall construct an NTM S decides the complement of ALL_{NFA}.

To do so, on each input $\langle M \rangle$, we try to find a string that $\langle M \rangle$ rejects so as to show that it is in the complement of ALL_{NFA}.

The NTM S' in the next slide decides the complement of ALL_{NFA}:

- S' = "On input $\langle M \rangle$,
- 1. Place a marker on start state of NFA
- 2. Guess an input string w of length 2^{q} where q = number of states in M
- 3. Simulate the running of $\langle M \rangle$ on w, by updating the set of states with marker after reading a character from w
- 4. If at some point no accept states of M is marked, accept. Otherwise, reject."

Question 1: Why is the previous decider correctly decides the complement of ALL_{NFA}? Note that currently, only strings of length 2⁹ is examined...

Question 2: Is the space complexity O(length of input)?

The previous NTM S' has space problem...

We now modify it a bit to give S in the next slide, which decides the complement of ALL_{NFA} in O(length of input) space:

- S' = "On input $\langle M \rangle$,
- 1. Place a marker on start state of NFA
- 2. Repeat 2^q times, where q = number of states in M
 - (a) Guess the next input symbol and update the set of states with marker to simulate the reading of that symbol
- 3. If at some point no accept states of M is marked, accept. Otherwise, reject."

Savitch's Theorem

Theorem: Let $f: N \rightarrow R$ be a function, with $f(n) \ge n$. Then, NSPACE $(f(n)) \subseteq SPACE((f(n))^2)$

Proof: Let's do that later ^_^

PSPACE and NSPACE

Definition: PSPACE is the class of languages that are decidable in polynomial space by a DTM. In other words,

 $\mathsf{PSPACE} = \bigcup_k \mathsf{SPACE}(\mathsf{n}^k)$

Similarly, we can define NPSPACE to be the class of languages that are decidable in polynomial space by a NTM. So, what is the relationship between PSPACE and NPSPACE?

PSPACE = NPSPACE

Theorem: PSPACE = NPSPACE

Proof: By Savitch's Theorem.

PSPACE = co-NPSPACE

Theorem: PSPACE = co-NPSPACE

To prove PSPACE \subseteq co-NPSPACE, we see that PSPACE = co-PSPACE (why?), and co-PSPACE \subseteq co-NPSPACE (why?). To prove co-NPSPACE \subseteq PSPACE, we see that co-NPSPACE \subseteq co-PSPACE (Savitch's Theorem) and PSPACE = co-PSPACE. P, NP, and PSPACE

Theorem: $P \subseteq PSPACE$

Proof: If a language is decided by some DTM M in f(n) time, M cannot see more than f(n) cells. Thus, TIME(f(n)) \subseteq SPACE(f(n)), so that P \subseteq PSPACE

Theorem: $NP \subseteq PSPACE$

PSPACE and EXPTIME

Theorem: $PSPACE \subseteq EXPTIME$

Proof: If a language is decided by some DTM M in f(n) space (where $f(n) \ge n$), M can visit at most $f(n) 2^{O(f(n))}$ configurations (why?) Thus, M must run in $f(n) 2^{O(f(n))}$ time.

In other words, SPACE(f(n)) \subseteq TIME(2^{O(f(n))}), so that PSPACE \subseteq EXPTIME.

Summary

$P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

It is shown in Chapter 9 that $P \neq EXPTIME$, so that we know at least one of the above containment (\subseteq) must be proper (\subset)

Unfortunately, at this moment, we still don't know which one(s) is proper. What most researchers believe is all are proper.

Next Time

- Savitch's Theorem
- PSPACE-complete
- \cdot L and NL
- NL-complete