
CS5371
Theory of Computation

Lecture 23: Complexity VIII
(Space Complexity)



•Introduce Space Complexity
•Savitch’s Theorem
•The class PSPACE

Objectives



Space Complexity
Definition [for DTM]: Let M be a DTM that

halts on all inputs. The space complexity
of M is a function f: N  N, where f(n) is
the maximum number of tape cells that M
scans on any input of length n.

If the space complexity of M is f(n), we say
M runs in space f(n)



Space Complexity (2)

Definition [for NTM]: Let M be an NTM
that all branches halt on all inputs. The
space complexity of M, f(n), will be the
maximum number of tape cells that M
scans on any branch of its computation
for any input of length n.

Again, if the space complexity of M is f(n),
we say M runs in space f(n)



Space Complexity Classes

Definition: Let f: N  R be a function. We
define two notation for describing space
complexity classes as follows:

SPACE(f(n)) = { L | L is a language decided
by a DTM M that runs in f(n) space }

NSPACE(f(n)) = { L | L is a language decided
by an NTM M that runs in f(n) space }



Example 1

Theorem: SAT is in SPACE(n)

Proof: The following DTM M decides SAT:

M = “On input F,
1. For each truth assignment,

(a) Evaluate F on that truth assignment
2. If F is evaluated to TRUE in some case,

accept. Otherwise, reject.”
The space usage is O(length of F). Why??



Example 2

Let ALLNFA be the language

{M| M is an NFA and L(M) = * }

Theorem: ALLNFA is in co-NSPACE(n). I.e.,
the complement of ALLNFA is in NSPACE(n).

Note that we still do not know if ALLNFA is
in NP, or in co-NP.



Example 2 (cont.)

Proof Idea: We shall construct an NTM S
decides the complement of ALLNFA.

To do so, on each input M, we try to find
a string that Mrejects so as to show
that it is in the complement of ALLNFA.

The NTM S’in the next slide decides the
complement of ALLNFA:



Example 2 (cont.)

S’= “On input M,
1. Place a marker on start state of NFA
2. Guess an input string w of length 2q

where q = number of states in M
3. Simulate the running of Mon w, by

updating the set of states with marker
after reading a character from w

4. If at some point no accept states of M
is marked, accept. Otherwise, reject.”



Example 2 (cont.)

Question 1: Why is the previous decider
correctly decides the complement of
ALLNFA ? Note that currently, only
strings of length 2q is examined…

Question 2: Is the space complexity
O(length of input)?



Example 2 (cont.)

The previous NTM S’has space problem…

We now modify it a bit to give S in the
next slide, which decides the
complement of ALLNFA in O(length of
input) space:



Example 2 (cont.)

S’= “On input M,
1. Place a marker on start state of NFA
2. Repeat 2q times, where q = number of

states in M
(a) Guess the next input symbol and
update the set of states with marker to
simulate the reading of that symbol

3. If at some point no accept states of M
is marked, accept. Otherwise, reject.”



Savitch’s Theorem
Theorem: Let f: N  R be a function, with

f(n) ¸ n. Then,

NSPACE(f(n)) µ SPACE((f(n))2)

Proof: Let’s do that later ^_^



PSPACE and NSPACE
Definition: PSPACE is the class of languages

that are decidable in polynomial space by a
DTM. In other words,

PSPACE = [k SPACE(nk)

Similarly, we can define NPSPACE to be the
class of languages that are decidable in
polynomial space by a NTM. So, what is
the relationship between PSPACE and
NPSPACE?



PSPACE = NPSPACE

Theorem: PSPACE = NPSPACE

Proof: By Savitch’s Theorem.



PSPACE = co-NPSPACE

Theorem: PSPACE = co-NPSPACE

To prove PSPACE µ co-NPSPACE, we see
that PSPACE = co-PSPACE (why?), and co-
PSPACE µ co-NPSPACE (why?).

To prove co-NPSPACE µ PSPACE, we see
that co-NPSPACE µ co-PSPACE (Savitch’s
Theorem) and PSPACE = co-PSPACE.



P, NP, and PSPACE

Theorem: P µ PSPACE

Theorem: NP µ PSPACE

Proof: If a language is decided by some DTM
M in f(n) time, M cannot see more than f(n)
cells. Thus, TIME(f(n)) µ SPACE(f(n)), so

that P µ PSPACE



PSPACE and EXPTIME

Theorem: PSPACE µ EXPTIME

Proof: If a language is decided by some
DTM M in f(n) space (where f(n) n), M
can visit at most f(n) 2 O(f(n))

configurations (why?) Thus, M must run in
f(n) 2 O(f(n)) time.

In other words, SPACE(f(n)) µ TIME(2O(f(n))),
so that PSPACE µ EXPTIME.



Summary

P µ NP µ PSPACE = NPSPACE µ EXPTIME

It is shown in Chapter 9 that P EXPTIME,
so that we know at least one of the above
containment (µ) must be proper (½)

Unfortunately, at this moment, we still
don’t know which one(s) is proper. What
most researchers believe is all are proper.



Next Time

•Savitch’s Theorem
•PSPACE-complete
•L and NL
•NL-complete


