
CS5371
Theory of Computation

Lecture 21: Complexity VI
(More NP-complete Problems)

•Proving a language is NP-complete by
reduction

•Examples NP-complete language we shall
see include:
3SAT, CLIQUE, IND-SET,
VERTEX-COVER, Directed-HAMPATH,
HAMPATH, SUBSET-SUM, PARTITION

Objectives

Conjuctive Normal Form
•A literal is a Boolean variable or a negated

Boolean variable. E.g., x, : y

•A clause is several literals connected with
_’s. E.g., (x _ y _ : z)

•A Boolean formula is in Conjuctive Normal
Form (Don’t confuse this with Chomosky Normal Form!!!)
if it is made of clauses connected with ^’s.
E.g., (x _ y _ : z) ^ (: y _ z) ^ (: x)

CNF-SAT is NP-complete

Theorem: CNF-SAT is NP-complete.

A Boolean formula is a cnf-formula if it is a
formula in Conjuctive Normal Form

Let CNF-SAT be the language

{ F| F is a satisfiable cnf-formula }

CNF-SAT is NP-complete (2)

Proof: To show CNF-SAT is NP-complete,
we notice that:

• CNF-SAT is in NP (easy to prove)
• Every language in NP is polynomial time

reducible to CNF-SAT  Because the
proof of Cook-Levin theorem in Lecture
20 can be directly re-used (recall that
the reduction is based on cnf-formula)

Thus, CNF-SAT is NP-complete

3SAT is NP-complete

Theorem: 3SAT is NP-complete.

A Boolean formula is a 3cnf-formula if it is
a formula in Conjuctive Normal Form, and
every clause has exactly 3 literals

Let 3SAT be the language

{ F| F is a satisfiable 3cnf-formula }

3SAT is NP-complete (2)

Proof: To show 3SAT is NP-complete, two
things to be done:

• Show 3SAT is in NP (easy)
• Show that every language in NP is

polynomial time reducible to 3SAT (how?)
 It is sufficient to give a polynomial
time reduction from some NP-complete
language to 3SAT (why?)

Which NP-complete language shall we use?

3SAT is NP-complete (3)

To reduce CNF-SAT to 3SAT, we convert a
cnf-formula F into a 3cnf-formula F’, such
that F is satisfiable if and only if F’is
satisfiable

Firstly, let C1,C2,…,Ck be the clauses in F. If
F is a 3cnf-formula, we just set F’to be
F. Otherwise, the following are the only
reasons why F is not a 3cnf-formula:

• Some clauses Ci has less than 3 literals
• Some clauses Ci has more than 3 literals

3SAT is NP-complete (4)

We begin with adding a sub-formula to F’.
Let x, y be new variables not in F. The first

set of clauses, (x _ x _ y) ^ (x _ x _ :y),
will be added. This ensures that x must
be set to 1 for F’to be satisfiable

Now, let us try to replace each of these
clauses into an equivalent set of 3-literal-
clauses

3SAT is NP-complete (5)

• For each clause that has one literal, say
L1, we change it into (L1 _ L1 _ :x) and
add this clause (by AND) to F’. Thus, if F’
is satisfiable, the value of L1 must be 1

• For each clause that has two literals, say
(L1 _ L2), we change it into (L1 _ L2_ :x)
and add this clause (by AND) to F’. Thus,
if F’is satisfiable, the value of (L1 _ L2)
must be 1

3SAT is NP-complete (6)

• For each clause that has more than three
literals, say (L1 _ L2_ …_ Lm), we replace
it by (L1 _ L2_ z1) ^ (:z1 _ L3 _ z2) ^ (:z2

_ L4 _ z3) ^ …^ (:zm-3 _ Lm-1 _ Lm)

and add this set of clauses (by AND) to
F’. Thus, if F’is satisfiable, the value of
(L1 _ L2_ …_ Lm) must be 1 [why??]

3SAT is NP-complete (7)

• Finally, for each clause that has three
literals, we simply add this clause (by
AND) to F’. Thus, if F’is satisfiable, the
value of this clause must be 1

• By our construction of F’, F is satisfiable
if and only if F’is satisfiable (why??)

• Also, the above conversion takes
polynomial time (why??). Thus, we show a
polynomial time reduction from CNF-SAT
to 3SAT  3SAT is NP-complete

CLIQUE is NP-complete

Theorem: CLIQUE is NP-complete.

Recall that CLIQUE is the language

{ G,k| G is a graph with a k-clique }

How to prove??

CLIQUE is NP-complete (2)

Proof: To show CLIQUE is NP-complete,
two things to be done:

• Show CLIQUE is in NP (done before)
• Show that every language in NP is

polynomial time reducible to CLIQUE
 It is sufficient to give a polynomial
time reduction from some NP-complete
language to CLIQUE

Which NP-complete language shall we use?

CLIQUE is NP-complete (3)

Let us try to reduce 3SAT to CLIQUE:

Let F be a 3cnf-formula. Let C1,C2,…,Ck be
the clauses in F.

Hint: Construct a graph G such that F is
satisfiable if and only if G has a k-clique

CLIQUE is NP-complete (4)
Proof (cont.): Let F be a 3cnf-formula. Let

C1,C2,…,Ck be the clauses in F. For each
clause Cj, let xj,1, xj,2, xj,3 be its literals.

We construct a graph as follows: For each
literal xj,q, we create a distinct vertex in
G representing it. G contains all possible
edges except those joining two vertices in
the same clause, and except those joining
two vertices whose literals is the
negation of the others. E.g., (next slide)

Constructing G from F

F = (x _ y _ : z) ^ (x _ : y _ z) ^
(: x _ : y _ : z)

x

y

: z

C1

C2

x z: y

: z

: y

: x

C3

G

CLIQUE is NP-complete (5)

Proof (cont.): We now show that G has a k-
clique if and only if F is satisfiable.

 If G has a k-clique, the k-clique must a
vertex from each clause (why?) Also, no
vertex will be the negation of the others
in the clique (why?) Thus, by setting the
corresponding literal (not variable) to
TRUE, each clause in F will be satisfied.

CLIQUE is NP-complete (6)

 If F is satisfiable, (at least) a literal in
each clause will be set to TRUE in the
satisfying assignment. The corresponding
vertices in G must form a clique (why?)
Thus, G has a k-clique.

Notice that G can be constructed from F in
polynomial time  We have a polynomial
time reduction from 3SAT to CLIQUE 
Thus, CLIQUE is NP-complete

IND-SET is NP-complete

Theorem: IND-SET is NP-complete.

A set of vertices inside a graph G is an
independent set if there are no edges
between any two of these vertices.

Let IND-SET be the language

{ G,k| G is a graph with an independent
set of size k }

IND-SET is NP-complete (2)

Proof: To show IND-SET is NP-complete,
two things to be done:

• Show IND-SET is in NP (easy)
• Show every language in NP is polynomial

time reducible to IND-SET
 It is sufficient to give a polynomial
time reduction from some NP-complete
language to IND-SET

Hint: Use CLIQUE for the reduction

IND-SET is NP-complete (3)

Proof (cont.): We now show that a problem
in CLIQUE can be reduced to a problem in
IND-SET in polynomial time.

We shall construct G’such that G has a k-
clique if and only if G’has an independent
set of size k. That is, construct G’such
that
G,kin CLIQUE  G’,kin IND-SET

IND-SET is NP-complete (4)
Given G=(V,E), we set G’=(V’,E’) to be the

complement of G. In other words, V = V’
(G and G’has the same set of vertices),
but e in E  e not in E’

It is easy to check that G’is the desired
graph we want (how to check?). As the
construction of G’is done in polynomial
time, we have a polynomial time reduction
from CLIQUE to IND-SET  IND-SET
is NP-complete.

VERTEX-COVER is NP-complete

Theorem: VERTEX-COVER is NP-complete.

A set of vertices inside a graph G is a
vertex cover if every edge in G is
connected to at least one vertex in the set.

Let VERTEX-COVER be the language

{ G,k| G is a graph with a vertex cover of
size k }

VERTEX-COVER is NP-complete (2)

Proof: To show VERTEX-COVER is NP-
complete, two things to be done:

• Show VERTEX-COVER is in NP (easy)
• Show that every language in NP is

polynomial time reducible to VERTEX-
COVER  It is sufficient to give a
polynomial time reduction from some NP-
complete language to VERTEX-COVER

Hint: Use IND-SET for the reduction

VERTEX-COVER is NP-complete (3)

Proof (cont.): We now show that a problem
in IND-SET can be reduced to a problem
in VERTEX-COVER in polynomial time.

In fact, for G having n vertices, we will
simply show that G has an independent
set of size k if and only if G has a vertex
cover of size n-k. That is, we show

G,kin IND-SET  G,n-kin VERTEX-COVER

VERTEX-COVER is NP-complete (4)
Given G=(V,E), if V’is a vertex cover, then

every edge is attached to at least one
vertex in V’. By deleting V’from the
graph, no edge remains. Thus, V-V’will be
an independent set. On the other hand, if
V-V’is an independent set, V’must be a
vertex cover (why?).

Thus, we have a polynomial time reduction
from IND-SET to VERTEX-COVER 
VERTEX-COVER is NP-complete.

Next Time

• More NP-complete problems

