
CS5371
Theory of Computation

Lecture 20: Complexity V
(Polynomial-Time Reducibility)

•Polynomial Time Reducibility
•Prove Cook-Levin Theorem

Objectives

Polynomial Time Reducibility
•Previously, we have learnt mapping

reducibility, so that if a problem A can be
‘mapped’in finite steps into another
problem B, we can conclude that

if B is decidable, A is decidable, or
if B is recognizable, A is recognizable

•Suppose that we restrict the mapping
reducibility to be done in polynomial time.
What can we conclude?

Polynomial Time Reducibility (2)

Definition: A function f:** is a
polynomial time computable function if
some polynomial time TM M exists that
halts with just f(w) on its tape, when
started with input w

We define (in this slide + in next slide):

In other words, it is a computable function
where the corresponding TM runs in
polynomial time

Polynomial Time Reducibility (3)

Definition: Language A is polynomial time
mapping reducible, or simply polynomial
time reducible, to language B, written as
A P B, if a polynomial time computable
function f exists, where for each w,

w 2 A  f(w) 2 B

The function f is called a polynomial time
reduction of A to B

Definition of NP-Complete
Definition: A language B is NP-complete if

1. B is in NP, and
2. every A in NP is polynomial time

reducible to B

What is so special about NP-complete?

Properties of NP-Complete

Theorem: Suppose a language B is NP-
complete. B is in P if and only if P = NP

Naturally, a NP-complete language is the
“most difficult”language in NP for us to
decide, because if it can be decided in
polynomial time, every language in NP can
be decided in polynomial time

In other words, we have…

Cook-Levin Theorem
Recall that Cook-Levin Theorem is the

following:

Theorem: SAT is P if and only if P = NP

To prove the above theorem, it is equivalent
if we prove:

Theorem: SAT is NP-complete

Proof of Cook-Levin

•To prove SAT is NP-complete, we need to
do two things:
1. Show SAT is in NP
2. Show every other language in NP is

polynomial time reducible to SAT

Proof of 1: Simple (Can you give a DTM
verifier proof? Can you give an NTM
decider proof?)

Proof of Cook-Levin (2)

•Showing 2 is harder…
•Idea: We construct a polynomial time

reduction for each A in NP to SAT.
•The reduction of A takes a string w and

gives a Boolean formula F that simulates
the NP machine N for A on input w

•If N accepts w, the corresponding
satisfying assignment of F corresponds
the accepting computation. Else, no
satisfying assignment exists

Proof of Cook-Levin (3)

•Thus, we shall show that w is in A if and
only if F is in SAT

Proof of 2: Let N be an NTM that decides
A. Let the running time of N be nk for
some k. We define a tableau for N on an
input string w to be an nk by nk table
whose rows are the configurations of a
branch of computation of N on w. For
instance, (see next slide)

A Tableau for N on w

##

##

##

#wnw2w1q0#

nk

nk

Start
configuration

nk th
configuration

More on Tableau
•For convenience, we assume each

configuration starts and ends with a #
symbol

•The first row is the starting
configuration, and each row follows from
the previous row legally according to N’s
transition function

•A tableau is accepting if any row of the
tableau is an accepting configuration

Proof of Cook-Levin (4)

•Note: every accepting tableau
corresponds an accepting computation

•Thus, deciding whether N accepts w is
equivalent to deciding whether an
accepting tableau for N on w exists

•Our task now is to find the desired
Boolean formula F based on N and w (what
is the requirement of F?)

Proof of Cook-Levin (5)

•For each cell (i, j) in the tableau, and each
s in C = Q {#}, we define a variable
xi,j,s. Intuitively, this variable is 1 means
that cell (i,j) contains the symbol s

•Our formula F will correspond to a valid
tableau, so we need to make sure when F
is satisfiable:
1. Each cell is occupied by exact 1 symbol
2. The tableau has accepting configuration
3. Each row is correct

Proof of Cook-Levin (5)

•In particular, we will use sub-formula to
represent the above three cases, so that
these sub-formula is satisfiable if the
corresponding three cases are correct

•The final F is obtained by “And”-ing all
these formula, so that if F is satisfiable,
all three cases must be correct

Each Cell has only 1 symbol
• The following sub-formula ensures cell

(i,j) contains at least one symbol:
fi,j,1 = _s 2 C xi,j,s

• The following sub-formula ensures cell
(i,j) contains at most one symbol:

fi,j,2 = ^s,t 2 C, s t ((: xi,j,s) _ (: xi,j,t))

Thus, fi,j,1 ^ fi,j,2 will ensure cell (i,j) has
exactly one symbol, if F is satisfiable

Accepting Configuration
The following sub-formula ensures the

tableau has an accepting configuration if
F is satisfiable:

faccept =_i,j xi,j,qaccept

Row is Legal
To ensure starting row is correct, we use

the following sub-formula:

fstart = x1,1,#^ x1,2,q0
^ x1,3,w1

^ x1,4,w2
^…^

x1,n+2,wn
^ x1,n+3,^ …^ x1,nk-1,^ x1, nk,#

To ensure the remaining rows are correct,
we first define the concept of a window
and legal window inside the tableau: (next
slide)

Row is Legal (2)

A window at (i,j) refers to the 2x3 cells of
(i,j), (i,j+1), (i,j+2), (i+1,j), (i+1,j+1), and
(i+1,j+2)

A legal window is a window that does not
violate the actions specified by the N’s
transition function, considering the
configuration of each row is following
legally from the configuration in the row
above

Row is Legal (3)

E.g.,
caq2

bq1a

q2aa
bq1a

baa
q1aa

This window is legal if there is
a transition (q1,b) = (q2,c,L)

This window is legal if there is
a transition (q1,b) = (q2,a,R)

This window is legal if there is
a transition (q1,c) = (q2,b,R)

for some c and q2

Row is Legal (4)

E.g.,
ba#
ba#

q2ba
aba

aab
aaa

This window is also legal

This window is legal if there is
a transition (q1,b) = (q2,c,L)

for some q1, b, and c

This window is legal if there is
a transition (q1,a) = (q2,b,L)

for some q1 and q2

Row is Legal (5)

E.g.,
baa
bba

q2aq2

bq1a

bcq2

aq1a

All these windows cannot be
legal, why?

Row is Legal (6)

Note the the window containing the state
symbol in the center top cell guarantees
that the corresponding three lower cells
are updated consistently with the
transition function

Thus, if the upper configuration is a legal, so
is the lower configuration, and so is every
configuration that follows below

Row is Legal (7)

Based on the legal window concept, the
following sub-formula ensures that each
row are following correctly:
fmove=^1 i,j nk-2 (window at (i,j) is legal)

and the text “window at (i,j) is legal”can be
replaced by:

_a1,a2,…,a6 is a legal window (xi,j,a1^ xi,j+1,a2^ xi,j+2,a3^
xi+1,j,a4^ xi+1,j+1,a5^ xi+1,j+2,a6)

Proof of Cook-Levin (6)

Thus, if
F = (^i,j (fi,j,1 ^ fi,j,2)) ^ faccept ^ fstart ^ fmove

then F is satisfiable implies N has an
accepting computation on input w  N
accepts w

Conversely, we can see that if N accepts w,
there must be an accepting computation,
and F has a satisfying assigment  F is
satisfiable

Proof of Cook-Levin (7)

The above construction of F gives a
reduction from deciding a language in NP
to deciding whether a formula is
satisfying

To show SAT is NP-complete, it remains to
show that the above construction is done
in polynomial time (in terms of the length
of the input w)

Proof of Cook-Levin (8)

Given w of length n,

• the sub-formula fstart can be constructed
in O(nk) time

• the sub-formula ^i,j (fi,j,1 ^ fi,j,2), faccept

and fmove can be constructed in O(n2k)
time [why??]

As any language in NP is polynomial time
reducible to SAT and SAT is in NP 
SAT is NP-complete

Next Time

• More NP-complete problems

