CS5371 Theory of Computation Lecture 2: Mathematics Review II (Proof Techniques)

Some Updates

- Our consultation hours are as follows: Kai (資電館741): Tue 1500—1600 Fri 1400—1500
 - Yu-Han (紅樓315): Wed 1500—1700
- There is a link from my homepage to access the course homepage: www.cs.nthu.edu.tw/~wkhon

Objectives

- This time, we will look at some examples to demonstrate the following common proof techniques
 - By contradiction
 - By construction
 - By induction
- These techniques often occur in proving theorems in the theory of computation

- One common way to prove a theorem is to assume that the theorem is false, and then show that this assumption leads to an obviously false consequence (also called a contradiction)
- This type of reasoning is used frequently in everyday life, as shown in the following example

- Jack sees Jill, who just comes in from outdoor
- Jill looks completely dry
- Jack knows that it is not raining
- Jack's proof:
 - If it were raining (the assumption that the statement is false), Jill will be wet.
 - The consequence is: "Jill is wet" AND "Jill is dry", which is obviously false
 - Therefore, it must not be raining

By Contradiction [Example 1]

- Let us define a number is rational if it can be expressed as p/q where p and q are integers; if it cannot, then the number is called irrational
- E.g.,
 - 0.5 is rational because 0.5 = 1/2
 - 2.375 is rational because 2.375 = 2375 / 1000

- Theorem: $\sqrt{2}$ (the square-root of 2) is irrational.
- How to prove?
- First thing is ...

Assume that $\sqrt{2}$ is rational

- Proof: Assume that $\sqrt{2}$ is rational. Then, it can be written as p/q for some positive integers p and q.
- In fact, we can further restrict that p and q does not have common factor.
 - If D is a common factor of p and q, we use p' = p/D and q' = q/D so that $p'/q' = p/q = \sqrt{2}$ and there is no common factor between p' and q'
- Then, we have $p^2/q^2 = 2$, or $2q^2 = p^2$.

- Since 2q² is an even number, p² is also an even number
 - This implies that p is an even number (why?)
- So, p = 2r for some integer r
- $2q^2 = p^2 = (2r)^2 = 4r^2$

- This implies $2r^2 = q^2$

- So, q is an even number
- Something wrong happens... (what is it?)

- We now have: "p and q does not have common factor" AND "p and q have common factor"
 - This is a contradiction
- Thus, the assumption is wrong, so that $\sqrt{2}$ is irrational

By Contradiction [Example 2]

- Theorem (Pigeonhole principle): A total of n+1 balls are put into n boxes. At least one box containing 2 or more balls.
- Proof: Assume "at least one box containing 2 or more balls" is false

- That is, each has at most 1 or fewer ball Consequence: total number of balls \leq n Thus, there is a contradiction (what is that?)

Proof By Construction

- Many theorem states that a particular type of object exists
- One way to prove is to find a way to construct one such object
- This technique is called proof by construction

By Construction [Example 1]

- Let us define a graph to be k-regular if every vertex of the graph has degree k
- E.g.,

2-regular

3-regular

By Construction

- Theorem: For each even number $n \ge 4$, there exists a 3-regular graph with n vertices.
- How to prove it?

By Construction

- Proof Idea: Arrange the points evenly in a circle, for each vertex, form two edges one with its left neighbor and one with its right neighbor. Also, form an edge with the vertex opposite to it in the circle
- Formal Proof: Label the vertices by 1,2,..., n.
 The edge set E is the union of
 - $E1 = \{ \{x, x+1\} \mid for x = 1, 2, ..., n-1 \}$
 - E2 = { {1,n} }
 - E3 = { {x, x+ (n/2)} | for x = 1,2,...,n/2 }

Then, it is easy to check that the degree of each vertex is exactly 3.

By Construction [Example 2]

- Theorem: There exists a rational number p which can be expressed as q^r, with q and r both irrational.
- How to prove?
 - Find p, q, r satisfying the above condition
- What is the irrational number we just learnt? Can we make use of it?

By Construction

- What is the following value? $(\sqrt{2} \sqrt{2})^{\sqrt{2}}$
- If $\sqrt{2} \sqrt{2}$ is rational, then $q = r = \sqrt{2}$ gives the desired answer
- Otherwise, $q = \sqrt{2} \sqrt{2}$ and $r = \sqrt{2}$ gives the desired answer

- Normally used to show that all elements in an infinite set have a specified property
- The proof consists of proving two things: The basis, and the inductive step

- To illustrate how induction works, let us consider the infinite set of natural numbers, {1,2,3,...} and we want to show some property P holds for each element in the set
- One way to do so is:
 - Show P holds for 1 [shorthand: P(1) is true]
 - Show for each $k \ge 1$, if P(k) is true, then P(k+1) is true [shorthand: P(k) \rightarrow P(k+1) is true]

- Then, we can conclude that P(k) is true for all k ≥ 1 (why?)
 - P(1) is true
 - Because P(1) is true and P(k) \rightarrow P(k+1), then P(2) is true
 - Because P(2) is true and P(k) \rightarrow P(k+1), then P(3) is true

- There can be many other types of basis and inductive step, as long as by proving both of them, they can cover all the cases
- For example, to show P is true for all k > 1, we can show
 - Basis: P(1) is true, P(2) is true
 - Inductive step: $P(k) \rightarrow P(k+2)$
- Another example
 - Basis: P(1) is true, P(2) is true, ..., P(2ⁱ) is true for all i
 - Inductive step: $P(k) \rightarrow P(k-1)$

By Induction [Example 1]

- Let F(k) be a sequence defined as follows:
- F(1) = 1
- F(2) = 1
- for all $k \ge 3$, F(k) = F(k-1) + F(k-2)
- Theorem: For all $n \ge 1$, F(1)+F(2) + ... + F(n) = F(n+2) - 1

- Let P(k) means "the theorem is true when n = k"
- Basis: To show P(1) is true.
 - F(1) = 1, F(3) = F(1) + F(2) = 2
 - Thus, F(1) = F(3) 1
 - Thus, P(1) is true
- Inductive Step: To show for $k \ge 1$, $P(k) \rightarrow P(k+1)$
 - P(k) is true means: F(1) + F(2) + ... + F(k) = F(k+2) 1
 - Then, we have

F(1) + F(2) + ... + F(k+1)= (F(k+2) - 1) + F(k+1)

= F(k+3) - 1

- Thus, P(k+1) is true if P(k) is true

- CLAIM: In any set of h horses, all horses are of the same color.
- PROOF: By induction. Let P(k) means
 "the claim is true when h = k"
- Basis: P(1) is true, because in any set of 1 horse, all horses clearly are the same color.

- Inductive step:
 - Assume P(k) is true.
 - Then we take any set of k+1 horses.
 - Remove one of them. Then, the remaining horses are of the same color (because P(k) is true).
 - Put back the removed horse into the set, and remove another horse
 - In this new set, all horses are of same color (because P(k) is true).
 - Therefore, all horses are of the same color!
- What's wrong?

More on Pigeonhole Principle

- Theorem: For any graph with more than two vertices, there exists two vertices whose degree are the same.
- How to prove?

More on Pigeonhole Principle

- Theorem: There exists a number consisted by all 1's (such as 1, 11, 111, ...) which is divisible by 1997.
- How to prove?

Next

• Part I: Automata Theory