
CS5371
Theory of Computation

Lecture 19: Complexity IV
(More on NP, NP-Complete)



•More discussion on the class NP
•Cook-Levin Theorem

Objectives



The Class NP revisited
•Recall that we have defined NP to be the

class of language that has a polynomial
time verifier

•If a language L is in NP, there is a
polynomial time TM V (verifier) such that
•For each w in L, there is some string c

such that w,cis accepted by V, and
•For every w not in L, there is no string

c such that w,ccan be accepted by V



The Class NP revisited (2)

The reason why V is called a verifier for the
language L is that

• if a string w is in L, it has at least one
certificate c that it can present to V, so
that V can correctly say that it is in L

• if a string w is not in L, it will not have any
certificate c to present to V, so that V
will never make a mistake by saying it is in
L



Examples (HAMPATH)

•The certificate for a string Gin
HAMPATH, or for a graph G to be
Hamiltonian, is the order of vertices
visited in a Hamiltonian path in G
•The corresponding verifier can use the

certificate to prove Gis in HAMPATH
in polynomial time (in terms of the
length of G)

•Also, for a graph which is non Hamiltonian,
no certificate can fool this verifier



Examples (COMPOSITE)

•The certificate for a string xin
COMPOSITE (I.e., the number x is a
composite number) is a factor of x
between 2 to x-1
•The corresponding verifier can use the

certificate to prove xis in
COMPOSITE in polynomial time (in
terms of log x --- the length of x)

•Also, when a number not composite, no
certificate can fool this verifier



Properties of NP
Theorem: A language is in NP if and only if

it is decided by a NTM that runs in
polynomial time.

Prove idea: We show how to convert a
verifier into a NTM and vice versa…



Properties of NP (2)

Proof: () Let A be a language in NP, so
that it can be verified by some polynomial
time verifier V. Let nk be the running
time of V. We create a polynomial time
NTM N that decides A as follows:

N = “On input w,
1. Select a string c of length at most nk

2. Run V on w,c
3. If V accepts, accept. Else, reject.”



Properties of NP (3)

Proof: () Let A be a language decided by
some polynomial time NTM N. We
construct a polynomial time verifier V as
follows:

V = “On input w,c,
1. Simulate N on w, treating c as the

description of the non-deterministic
choice of N at each step

2. If this branch of computation in N
accepts, accept. Else, reject.”



Properties of NP (4)

Definition: NTIME(t(n)) = the set of
languages that can be decided by an NTM
that runs in O(t(n)) time

Based on the above definition and the
previous theorem, we have:

Corollary: NP = k NTIME(nk)



More Examples of NP
Definition: A clique is a subgraph G’in an

undirected graph G such that every two
nodes in G’are connected.

Definition: A k-clique is a clique that
contains k nodes.

E.g.,

Can you find a 5-clique here?



More Examples in NP (2)

Theorem: CLIQUE is in NP.

Let CLIQUE be the language

{ G,k| G is a graph with a k-clique }

How to prove??



CLIQUE is in NP
Proof 1 (using DTM verifier): What should

be the certificate that a graph can prove
itself is a k-clique??

The following is the verifier for CLIQUE:
V = “On input G,k,c
1. Test if c is a set of k nodes in G
2. Test whether every two nodes in c are

connected
3. If both pass, accept. Else, reject.”



CLIQUE is in NP (2)

Proof 2 (using NTM decider): What should
be the “guess”made by the NTM in order
to check if G contains a k-clique??

The NTM below is one that decides CLIQUE:
N = “On input G,k
1. Non-deterministically select a subset c

containing k nodes of G
2. Check if every two nodes in c are

connected
3. If yes, accept. Else, reject.”



Another Examples in NP

Theorem: SUBSET-SUM is in NP.

Let SUBSET-SUM be the language

{ S,t| S is a set of integers such that

a subset of S adds up to t }

How to prove??



SUBSET-SUM is in NP
Proof 1 (using DTM verifier): What should

be the certificate that S can prove itself
has a subset that adds up to t??

The verifier below is one for SUBSET-SUM:
V = “On input S,t,c
1. Test if c is a set of numbers in S
2. Test if the numbers in c adds up to t
3. If both pass, accept. Else, reject.”



SUBSET-SUM is in NP (2)

Proof 2 (using NTM decider): What should
be the non-deterministic guess made by
the NTM in order to check if S contains a
subset that adds up to t??

The NTM below is one that decides
SUBSET-SUM:

N = “On input S,t
1. Non-deterministically find a subset c of S
2. Check if the numbers in c adds up to t
3. If yes, accept. Else, reject.”



P versus NP
Roughly speaking:

P = the class of language that can be
decided “quickly”

NP = the class of language that can be
verified “quickly”

• The power of the polynomial time NTM
decider seems to be much greater than
the polynomial time DTM decider…



P versus NP (2)

•…Unfortunately, so far, nobody can tell
whether P = NP, or P NP, is true

• A general belief (which may not be true)
is P NP because people has input a lot of
effort to find polynomial time algorithms
for certain problems in NP, but fail

• What we can conclude safely so far is:

P µ NP µkTIME(2nk) = EXPTIME



NP-Completeness

In the early 1970s, Stephen Cook and
Leonid Levin (separately) discovered that:
Some languages in NP, if any of them are
decidable by a DTM in polynomial time,
will imply ALL problems in NP can be
decided by a DTM in polynomial time

That is, they discovered some language L,
such that if L is in P, then P = NP



NP-Completeness (2)

These problems are called NP-complete
problems, and they form a class NP-C
(We shall give formal definition later)

The first NP-complete problem we present
is called the satifiability problem



Satisfiability Problem
Definition: A variable v is called a Boolean

variable if it has a value either 1 (TRUE)
or 0 (FALSE)

Definition: The Boolean operations ^, _, :,
are defined as follows:

0 ^ 0 = 0, 0 _ 0 = 0, : 0 = 1
0 ^ 1 = 0, 0 _ 1 = 1, : 1 = 0
1 ^ 0 = 0, 1 _ 0 = 1,
1 ^ 1 = 1, 1 _ 1 = 1



Satisfiability Problem (2)

Definition: A Boolean formula is an
expression involving Boolean variables and
operations

E.g., The following is a Boolean formula:

F = (: x ^ y) _ (x ^ : z)



Satisfiability Problem (2)

Definition: A Boolean formula is satisfiable
if some assignments of 0 and 1 to the
variables makes the value of the formula
equal to 1

E.g., The previous Boolean formula

F = (: x ^ y) _ (x ^ : z)
is satisfiable because if we set x = 0, y = 1,

and z = 1, the value of F becomes 1



Cook-Levin Theorem

Theorem: SAT is P if and only if P = NP

Let SAT be the language

{ F| F is a satisfiable Boolean formula }



Next Time

•Polynomial Time Reducibility
•Prove Cook-Levin Theorem
•Proving other problems to be NP-

Complete


