CSbh371
Theory of Computation

Lecture 18: Complexity IIT
(Two Classes: P and NP)

Objectives

+ Define what is the class P

+ Examples of languages in P

» Define what is the class NP
» Examples of languages in NP

The Class P

Definition: Pis the class of languages that
are decidable in polynomial time on a
single-tape DTM. In other words,

Uk-1 TEME(n¥)

* Pis invariant for all computation models
that are polynomially equivalent to the
single-tape DTM, and

* P roughly corresponds to the class of
problems that are realistically solvable

Further points to notice

* When we describe an algorithm, we
usually describe it with stages, just like a
step in the TM, except that each stage
may actually consist of many TM steps

» Such a description allows an easier (and
clearer) way to analyze the running time
of the algorithm

Further points to notice (2)

* S0, when we analyze an algorithm to show

that it runs in poly-time, we usually do:

1. Give a polynomial upper bound on the
number of stages that the algorithm
uses when its input is of length n

2. Ensure that each stage can be
implemented in polynomial tfime on a
reasonable deterministic model

* When the two tasks are done, we can say

the algorithm runs in poly-time (why??)

Further points to notice (3)

+ Since time is measured in terms of n, we

have to be careful how to encode a string

+ We continue to use the notation () to

indicate a reasonable encoding

» E.g., the graph encoding in (V,E), DFA
encoding in (Q,X,5,9,.F), are reasonable

» E.g., fo encode a number in unary, such as
using 11111111111111111 to represent 17, is
not reasonable since it is exponentially
than any base-k encoding, for any k > 1

Examples of Languages in P

Let PATH be the language
{(G,s,t) | Gis agraph with path from s to 1}

Theorem: PATH is in P.

How to prove??

.. Find a decider for PATH that runs in
polynomial time

PATH isinP

Proof: A polynomial time decider M for
PATH operates as follows:

M = "On input (G,s,1),
1. Mark node s
2. Repeat until no new nodes are marked
i. Scan all edges of G to find an edge
that has exactly one marked node.
Mark the other node
3. If tis marked, accept. Else, reject.”

PATH is in P (2)

WhaT is the running time for M?
Let m be the number of nodes in G
Stages 1 and 3 each involves O(1) scan of
the input
Stage 2 has at most m runs, each run
checks at most all the edges of 6. Thus,
each run involves at most O(m?) scans of
the input = Stage 2 involves O(m3) scans
Since m = O(n), where n = input length,
the total time is polynomial in n

RELPRIME is inP

Let RELPRIME be the language
{ (x,y) | xand y are integers, gcd(x, y) = 1}

Theorem: RELPRIME is in P.

How to prove??
.. Let's try this ...

RELPRIME is in P (2)

Proof (?): Let M be the following decider
for RELPRIME:

M = "On input (x, y),
1. Let z = min {x, y}
2. Repeat for k=2, 3,4, .., z
if k divides both x and y, reject:;
3. If no k can divide both x and y, accept

"

Quick Quiz: Does M run in polynomial time?
.. No, so the proof is not correct...

RELPRIME is in P (3)

Proof: Let E (Euclidean algorithm) be the
following decider for RELPRIME:

E = "On input (X, y),
1. If x <y, exchange x and y
2. Repeat untily =0
. Assign x €< xmody
ii. Exchange x and y
3. If x = 1, accept. Else, reject.”

Question: What is the running time of E?

RELPRIME is in P (4)

Stage 1 and Stage 3 is run once

Each run of Stage 2 reduces the value of
x at least by half = number of runs of
Stage 2 is O(z), with z=log x + log y
Each run in the above stages requires
arithmetic operations, which takes time
polynomial in the encoding of operands =
polynomial in z

Total running time is polynomial in z
Since z = O(n), RELPRIME isinP

Correctness

In the previous slides, let x, and y; be the
values of the x and y when we run Stage 2
the it time. We claim that x,,, becomes
1in the end if and only if the original x,
and y, are relatively prime

Proof: We show gcd(x,,y,) = gcd(Xy.1,Y:1)
forallk=0,1,. end-1. If thisis true,
gcd(Xo.Yo) = ... = gcd(X,,4,0) = X,,4, SO That
our claim is correct.

Correctness (2)

First, any common divisor of x, and y, must
divide both x,,; [which isy,] and y,,; [which is x,
mody,]. This implies that

9Cd(kuYk) S 9Cd(xk+IIYk+1)°
Second, any common divisor of x,,;and y,,;

must divide both X, [which is equal to r * x,,; +
Yi.1 for some r] and Yk [which is x,,,]. This implies

gcd(Xy.Yx) = gcd(Xy.1.Yke1)-

Every CFL isinP

Theorem: Every context-free language is
in P.

How to prove??

.. Let's recall an old idea for deciding a
particular CFL ...

Every CFL is in P (2)

Proof(?): Let C be the CFL and G be the
CFG in Chomsky Normal form that
generates C. Define M as follows:

M = "On input w = w, w, ... w,,
1. Construct all possible derivations in G

with 2n-1 steps
2. If any derivation generates w, accept.

Else, reject.”

Quick Quiz: Does M run in polynomial time?

Every CFL is in P (3)

Proof: Let C be the CFL and G = (V,T,S,R)
be the CFG in Chomsky Normal form that
generates C. Define D as follows:

D="0Oninputw=w;w, .. w,
1. Ifw=¢cand S 2 ¢is arule, accept
2. Repeat for k=12,..,n
i. For each substring w' of w of length
k, find all variables that generate w'
3. If S generates w, accept. Else, reject.”

Every CFL is in P (4)
More on Stage 2:

Repeat for k=1.2,..,n
i. For each substring w' of w of length k,
find all variables that generate w'

In order to perform this stage efficiently,
we use the dynamic programming idea:
For k = 1, we do this by brute force
Foreach k=2, 3, .., n, we do this based
on the results up to length k-1

Every CFL is in P (5)

We shall store an n x n table such that the
entry (i,j) stores the possible variables

that can generate w; w,; ... w,
When k = 1, we do:

For each substring w' of w of length 1,
find all variables that generate w'

So, for each i, we scan the rules in R of the
form A 2 b to fill in the entry (i,i)

Every CFL is in P (6)
When k = 2,3,....n, we do:

For each substring w' of w of length k,
find all variables that generate w' (based
on the result of length 1,2,... k-1)

So, for each i, we scan the rules in R of the
form A = BC, and see if there exists x
(between i and i+k-1) with B is in (i,x) and
Cisin (x+1,i+k-1) . If so, add A in the
entry (i,i+k-1)

Every CFL is in P (7)

WhaT is the running time for Stage 2?

Let v and r be the number of variables

and number of rules of G, which are both

fixed constant independent of the input w

We need to compute n x n entries in the

table (each entry has at most v variables)
Each entry is computed by scanning all
the rules, and for each rule, scanning
the table at most O(n) times

=> Total scans to complete table = O(n x n
Xrxnxv)=0(nd

Every CFL is in P (7)

As each scan (either the table or the
rules) takes time polynomial to the input,
Stage 2 takes polynomial time

Also, the other stages take polynomial
time (constant number of scans)

Thus we can decide C = L(G) in polynomial
time, so that Cisin P

The Class NP

Definition: A verifier for a language A is an
algorithm V, where

A={w | Vaccepts (w,c) for some string c}

A polynomial-time verifier is a verifier that
runs in time polynomial in the length of
the input w.

The Class NP

A language A is polynomially verifiable if it
has a polynomial time verifier.

Definition: NP is the class of language that
is polynomially verifiable.

Examples of Languages in NP

Let HAMILTON be the language
{(6) | G is a Hamiltonian graph }
Theorem: HAMILTON is in NP.

How to prove?? .. Define a polynomial
time verifier V, and for each (G) in
HAMILTON, define a string c, and show
{(G) | V accepts (G,c) } = HAMILTON

HAMILTON is in NP

Proof: Definea TM V as follows:

V = "On input (6,c)
1. If c is a cycle in G that visits each
vertex once, accept
2. Else, reject.”

* Note: V runs in time polynomial in length
of (G) (why?)

+ To show HAMILTON is in NP, it remains
to show V is a verifier for HAMILTON

HAMILTON is in NP (2)

To show V is a verifier, we let H={(G) | V
accepts (G,c) }, and show H = HAMILTON

For every (G) in H, there is some ¢ that V
accepts (G,c). This implies (G) is a
Hamiltonian graph, and H C HAMILTON

For every (G) in HAMILTON, let c be one of
the hamilton cycle in the graph. Then, V

accepts (6,c), and so HAMILTON C H

Examples of Languages in NP (2)

Let COMPOSITE be the language

{ x | x is a composite number }

Theorem: COMPOSITE is in NP.

How to prove?? .. Define a polynomial time
verifier V, and for each x in
COMPOSITE, define a string ¢, and show
that { x | V accepts (x,c) } = COMPOSITE

COMPQOSITE isin NP

Proof: Definea TM V as follows:

V ="On input (x,c) ,
1. If cisnot1or x, and c divides x,
accept
2. Else, reject.”

Note: V runs in time polynomial in length
of (x) (why?)

+ To show COMPOSITE is in NP, it remains
to show V is a verifier for COMPOSITE

COMPOSITE is in NP (2)

To show V is a verifier,welet C={x | V
accepts (x,c) }, and show C = COMPOSITE

For every x in C, there is some ¢ that V
accepts (G,c). This implies x is a
composite number, and C C COMPOSITE

For every x in COMPOSITE, let ¢ be one of
the divisor of x with 1< c< x. Then, V
accepts (x,c), and so COMPOSITE C C

Next Time

* More on NP

* The class NP-Complete

- Containing the "most difficult” problems in
NP

* Proving a problem is in NP-Complete

