
CS5371
Theory of Computation

Lecture 17: Complexity II
(Relationship among models)



•Complexity relationship among models
–Single-Tape versus Multi-Tape
–NTM versus DTM

Objectives



Single-Tape versus Multi-Tape

Theorem: Let t(n) be a function, where t(n)
n. Then every t(n) time k-tape TM has
an equivalent O(k2 t(n)2) time single-tape
TM.

Proof: Let M be a k-tape TM that runs in
t(n) time. We construct a single-tape TM
S that runs in O(k2 t(n)2) time.



Single-Tape vs Multi-Tape (2)

Recall that we learnt one way of how S can
simulate M (in Lecture 11):

• S uses its single tape to represent the
contents of all k tapes in M

•The k tapes are stored consecutively,
separated by #

•Positions of tape heads are represented
by “marked”symbols

Here, S uses the same way to simulate M



Single-Tape vs Multi-Tape (3)

Recall that to perform a step in M, S will do:
•Scan the tape to collect the characters

under each of the tape heads in M
•Scan the tape again, update the symbol

under the tape heads of M, and update
the positions of the tape heads

•Special case: when a tape head of M
moves rightward onto an unread portion,
we add a space in the corresponding place
in S’s tape (by shifting)



Single-Tape vs Multi-Tape (4)

Since M runs in t(n) time, each of its tape
head can access only the first t(n) cells.
Thus, S will use (and access) only the
first k £ t(n) + k + 1 = O(k t(n)) cells.

We call these O(k t(n)) cells the active
portion of S’s tape



Single-Tape vs Multi-Tape (5)

S simulates M for O(t(n)) steps.
•Each step in the worst case needs to (1)

scan the tape first, (2) add a space to
each of the k tapes, and (3) update the
tape contents and tape heads.

• (1) and (3) accesses only the active
portion of S’s tape  O(k t(n)) time

• (2) scans the active portion for at most k
times, which is O(k2 t(n)) time

In total, it takes O(k2 t(n)2)



Polynomial Time Bounds
If the running time t(n) of a machine M is

O(nc) for some fixed constant c 0, the
running time is called polynomial bounded,
or we say M runs in polynomial time. This
gives the following corollary.

Corollary: For any k-tape TM that runs in
polynomial time, it has an equivalent
single-tape TM that runs in polynomial
time.



NTM decider

Recall that an NTM is a decider if all its
computation branches halt on all inputs.

Definition: Let M be an NTM decider. The
running time of M is the function f:NN,
where f(n) is the maximum number of
steps that M uses on any branch of its
computation on any input of length n



Comparison of Running Times

f(n)

Deterministic time

accept/reject

accept

reject

f(n)

Non-deterministic time



DTM versus NTM decider

Theorem: Let t(n) be a function, where t(n)
n. Then every t(n) time single-tape
NTM decider has an equivalent 2O(t(n))

time single-tape DTM.

Proof: Let M be a NTM that runs in t(n)
time. We construct a DTM D that
simulates M by searching M’s computation
tree, as described in Lecture 11. We now
analyze D’s simulation.



DTM versus NTM decider (2)
•On an input of length n, every branch of

computation of M has at most t(n) steps
•Every node in the computation tree has at

most b children, where b is the maximum
number of choices in M’s transition 
number of leaves is at most O(bt(n))

•Also, total number of nodes + leaves is at
most O(t(n) bt(n)) (why??)



DTM versus NTM decider (3)
•The simulation proceeds by visiting the

nodes (including leaves) in BFS order.
Here, when we visit a node v, we travel
from the root to v  time to visit v is
O(t(n))

Thus, the total time for D to simulate M is
O(t(n)2 bt(n)) = 2O(t(n)) (why??)



Next Time

•P and NP
–Two important classes of problems in time

complexity theory


