
CS5371
Theory of Computation

Lecture 16: Complexity I
(Time Complexity Theory)

•In this lecture, we focus on problems
that are computable, and investigate the
amount of time required to solve these
problems
–Later, we will investigate the amount of

space, and other resources required to solve
a problem

•Before that, we will review the big-O,
small-o, big-, and small-notations

Objectives

Big-O and Big-Notations

Definition: Let f and g be functions that
maps N to R+. We say f(n) = O(g(n)) if
there exists positive integers c and n’
such that for every n n’, f(n) cg(n).

When f(n) = O(g(n)), we say g(n) is an
asymptotic upper bound for f(n)

Big-O and Big-Notations

We say g(n) = (f(n)) if f(n) = O(g(n))

Important: f(n) = O(g(n)) is a special
notation, so that we will never write
O(g(n)) = f(n) instead

• Although, we can write something like:
f(n) = O(g(n)) = O(h(n)), which means:
f(n) = O(g(n)), and g(n) = O(h(n))

Small-o and Small-Notations

Definition: Let f and g be functions that
maps N to R+. We say f(n) = o(g(n)) if

limn!1f(n) /g(n) = 0

We say g(n) = (f(n)) if f(n) = o(g(n))

Examples
Is the following true?
1. 5n2 + 1002n + 17 = O(n2)
2. log3 n = O(log n)
3. log n = O(log3 n)
4. log n = O(n0.00001)
5. log (n2 log n) = O(log n)
6. 2n = O(3n)
7. 3n = O(2n)
8. n1/(log n) = o((n1/(log n))2)

Analyzing Algorithms
Let A be the language { 0k1k | k 0 }, and we

have seen that A is decidable before.
Below is one such TM that decides A:

M1 = “On input string w,
1. Scan across the tape and reject if 0

appears on the right of a 1
2. Repeat if both 0s and 1s remain in tape

a. Scan the tape, cross of a 0 and a 1
3. If all 0s and 1s are crossed, accept.

Otherwise, reject.”

Analyzing Algorithms (2)

How many steps will M1 need to decide if w
is in A or not? Let n be the length of w

•Step 1 takes at most O(n) steps
•Step 2 will repeat of at most n/2 times,

each time taking O(n) steps. In total,
Step 2 requires O(n2) steps

•Step 3 takes O(n) steps
Thus, M1 needs O(n2) steps to decide if w is

in A or not

Running Time

Definition: Let M be a deterministic Turing
machine that halts on all inputs. The
running time of M is the function f:NN,
where f(n) is the maximum number of
steps that M uses on any input of length n

If f(n) is the running time of M, we say M
runs in time f(n), and M is an f(n) time TM

Time Complexity Class

Definition: Let t: N  R+ be a function. We
define the time complexity class,
TIME(t(n)), to be the collection of all
languages that are decidable by an O(t(n))
time Turing machine

In the previous example, M1 is an O(n2) time
TM, so that the language A = {0k1k | k 0}
is in TIME(n2)

Analyzing Algorithms (3)

Can we decide A = { 0k1k | k 0 } faster?
Below is another TM that decides A:

M2 = “On input string w,
1. If 0 appears on the right of a 1, reject
2. Repeat if both 0s and 1s remain in tape

a. If total # of 0s and 1s is odd, reject
b. Scan the tape, cross off every other 0.

Then cross off every other 1.
3. If all 0s and 1s are crossed, accept.

Otherwise, reject.”

Analyzing Algorithms (4)

Question 1: Why M2 can decide A correctly?
Question 2: What is running time of M2?
•Step 1 and Step 3 takes O(n) steps.
•For each time Step 2 is repeated, number

of 0s is halved. Thus, Step 2 is repeated
for log n times

•Each time Step 2 is run, it takes O(n)
steps. Thus, Step 2 in total takes O(n log
n) steps

Thus, the running time of M2 is O(n log n)

Analyzing Algorithms (5)

This implies that A is in TIME(n log n)
Question 1: Earlier, we show that A is in

TIME(n2) …Is there a contradiction??
Question 2: Can we find a TM that decides A

faster? That is, in o(n log n) time?
•The answer is NO…(if TM just have a

single tape)
•In fact, it is shown that if a language can

be decided by a single-tape TM in
o(n log n) time, the language is regular

Analyzing Algorithms (6)

How about if we have 2 tapes?
M3 = “On input string w,
1. If 0 appears on the right of a 1, reject
2. Scan across 0s on tape 1 until first 1. At

the same time, copy 0s to tape 2
3. Scan tape 1 and tape 2 together. Each

time, match a 0 with a 1
4. If all 0s and 1s match, accept. Otherwise,

reject.”

Analyzing Algorithms (7)

The running time of M3 is O(n)!
What we have learnt before:

Single-tape and Multi-tape TM have the
same power (in terms of computability,
I.e., whether a problem can be solved)

What we have learnt now:
Single-tape and Multi-tape does not have
the same power (in terms of complexity,
I.e., how fast a problem can be solved)

Next Time

•Complexity relationship among models
–Single-Tape versus Multi-Tape
–Deterministic versus Non-Deterministic

•P and NP
–Two important classes of problems in time

complexity theory

