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Lecture 15: Computability VI
(Post’s Problem, Reducibility)



•In this lecture, we introduce Post’s
correspondence problem, which gives an
undecidable language which is based on
dominos

•We also introduce computable functions,
which allows us to look at reduction in a
formal way

Objectives



Post’s Correspondence Problem

Let P be a finite set of dominoes {d1,d2,…,dk},
each piece of domino di consists of a top
string ti and a bottom string bi

A match in P is a sequence i1, i2,…, ij
(allowing repeats) such that ti1 ti2 …tij =
bi1 bi2 …bij. That is, we can find a
sequence of dominoes such that the
concatenation of the top strings is equal
to the concatenation of the bottom
strings



Post’s Correspondence (2)

Theorem: PCP is undecidable

Let PCP be the language
{P| P is a set of dominoes with a match}



Post’s Correspondence (3)

Theorem: MPCP is undecidable

Before we do that, let us modified the
problem a bit… We require a match is
this problem must start with the first
domino

Let MPCP be the language
{P| P is a set of dominoes with a match
starting with the first domino}



Proving MPCP
Proof Idea:

Prove by reducing ATM to MPCP. That is,
assuming MPCP is decidable, we then show
ATM is decidable.

On input M, w, let us design a set of
dominoes, such that whenever M accepts
w, there is a match, and whenever M does
not accept w, there is no match



Proving MPCP (2)
Difficulty: We need to correspond every

possible (I.e., infinitely many) computation
of TM just by using the dominos …

Observation: From a configuration to the
next configuration, the change is “local”--
only around the tape head, and number of
possible changes are finite

On input M, w, we design dominos such that
M accepts w if and only if the match
corresponds to an accepting computation
history for M to accept w



Proving MPCP (3)

Let M = (Q, , , , q0, qacc, qreject) and w =
w1w2…wn

Step 1: Put # | #q0 w1w2…wn # as the first
domino (the notation t|b denote t is the
top string, and b is the bottom string)

Step 2: For every a,b in , every q,r in Q
where q qreject

Create domino qa | br if (q,a) = (r,b,R)



Proving MPCP (4)

Step 3: For every a,b,c in , every q,r in Q
where q qreject

Create domino cqa | rcb if (q,a) = (r,b,L)
How to handle the boundary case (when
the tape head is at the leftmost end of
tape?)

Step 4: For every a in ,
Create domino a | a



Proving MPCP (5)

Step 5: Create dominoes # | # and # | #
Why do we need # | # ?

Step 6: For every a in 
Create dominoes aqaccept | qaccept and
qaccepta | qaccept

Step 7: For every a in 
Create dominoes qaccept## | #



Proving MPCP (6)

We claim that MPCP has a match if and only
if M accepts w. Thus, MPCP is
undecidable (why? Can you construct a
decider for ATM based on a decider of
MPCP?)

It remains to show PCP is undecidable …We
prove this by reducing MPCP to PCP



Reducing MPCP to PCP
We use a trick to transform any MPCP

problem to a PCP problem, while enforcing
the match must start with the first
domino

Before that, we introduce the following
notation: for any string u = u1 u2 …uk

*u* = u1 u2 …uk 
u* = u1 u2 …uk 

*u = u1 u2 …uk



Reducing MPCP to PCP (2)

Let P’= {d1,d2,…,dk} be the dominos in MPCP,
with di consisting a top string ti and
bottom string bi; d1 is the first domino

We construct P as follows:
1. Add *t1 | *b1* to P
2. Add *tj | bj * to P, for every j = 1,2,…,k
3. Add |  to P
Thus, P has a match if and only if P’has a

match starting with d1



What is a Reduction?
We have seen a lot of examples that applies

reduction technique
Here, we give one formal way of defining

reduction  This allows us to understand
more about the power of reduction, and
allows us to prove more results

The formal definition is based on
computable functions (see next slides)



Computable Function
A Turing machine can compute a function as

follows: at the beginning, the tape
contains the input; once it halts, the tape
contains the output

A function f: * * is a computable
function if some TM exists such that for
any input w, it halts with f(w) on its tape

E.g., all arithmetic operations on integers
are computable functions (try prove it at
home)



Defining Reduction

Definition: Language A is mapping reducible
to language B, written as A ·m B, if there
is a computable function f: * * such
that for every w,

w 2 A  f(w) 2 B

The function f is called the reduction of A
to B



Some results

Theorem 1: If A ·m B and B is decidable,
then A is decidable. (Why?)

Theorem 2: If A ·m B and A is undecidable,
then B is undecidable.



Some results (2)

Theorem 3: If A ·m B and B is recognizable,
then A is recognizable (Why?)

Theorem 4: If A ·m B and A is non-
recognizable, then B is non-recognizable



Examples (HALTTM)
A long time ago, we showed how to reduce

ATM to HALTTM

To show this by mapping reduction, we want
to find a computable function f that
performs as follows:
If x = M, w, f(x) = M’, w’

such that x 2 ATM  f(x) 2 HALTTM

Else, f(x) = (or, pick any other string
not in HALTTM)



Examples (HALTTM)
Then, f can be computed by the TM F below:
F = “On input M, w,
1. Construct the machine M’:

M’= “On input x
1. Run M on x
2. If M accepts, accept; Else, enter loop”

2. Output M’, w
Thus, f is a computable function, so that

ATM ·m HALTTM



Examples (PCP)
In PCP problem, we showed how to reduce

ATM to MPCP
To show this by mapping reduction, we want

to find a computable function f that:
If x = M, w, f(x) = P

such that x 2 ATM  f(x) 2 MPCP

Else, f(x) =  (or any Pnot in MPCP)
We can construct a TM that computes f

(how?). Thus, ATM ·m MPCP



Examples (PCP)
Also, we showed how to reduce MPCP to PCP
To show this by mapping reduction, we want

to find a computable function g that:
If x = P, g(x) = P’

such that x 2 MPCP  g(x) 2 PCP

Else, g(x) = 
We can construct a TM that computes g, so

that PCP ·m PCP



Examples (PCP)
Combining the two examples, we can argue

that the function h = g o f is also a
computable function (why?), and has the
property that:

x 2 ATM  h(x) 2 PCP (why?)

Thus, ATM ·m PCP. By Theorem 1, we
conclude that PCP is undecidable



Examples (ETM)
When we show ETM is undecidable, our proof

is by reducing ATM to ETM

Let us recall a bit how we do so:
On given any input M, w, we construct a

TM M’such that
if M accepts w, then L(M’) = {w}
if M not accept w, then L(M’) = { }

This in fact gives us a computable function
f reducing ATM to “complement of ETM”



Examples (ETM)
I.e., we have a computable function f that:

x 2 ATM  f(x) 62 ETM,

or equivalently,
x 2 ATM  f(x) 2 E’TM

where E’TM denotes the complement of ETM

Thus, ATM ·m E’TM, which still implies ETM is
undecidable (why?)

Question: Can we prove the above by
finding a mapping reduction of ATM to ETM?



Examples (ETM)
…the answer is NO (Exercise 5.5)
Proof: Suppose on the contrary that

ATM ·m ETM. Then, we have A’TM·m E’TM

(why?).
However, E’TM is recognizable (why?) but

A’TM is not recognizable…
Thus, contradiction occurs (where?) and
we conclude that no reduction of ATM to
ETM exists



Examples (EQTM)

We have seen one example of a non-Turing
recognizable language: A’TM

Define: A language is co-recognizable if its
complement is recognizable.

Then, we have:

Theorem: EQTM is not recognizable, and not
co-recognizable. That is, EQTM is not
recognizable, and EQ’TM is not
recognizable.



Examples (EQTM)

Proof: We first show that ATM ·m EQ’TM.
If this can be shown, we equivalently has
shown that A’TM ·m EQTM (why?) and
proved that EQTM is not recognizable.

To show ATM ·m EQ’TM, we construct the TM
F giving the desired reduction f as follows
(see next slide):



Examples (EQTM)

F = “On input M, w,
1. Construct machines M1 and M2:

M1 = “On any input,
1. Reject”
M2 = “On any input,
1. Run M on w. If it accepts, accept”

2. Output M1, M2”
So, on input x = M, w, F computes M1, M2

as f(x). What is the property of f(x)?



Examples (EQTM)

Next, we show that ATM ·m EQTM. If this
can be shown, we equivalently has shown
that A’TM ·m EQ’TM and proved that EQ’TM

is not recognizable.

To show ATM ·m EQTM, we construct the TM
G giving the desired reduction g as follows
(see next slide):



Examples (EQTM)

G = “On input M, w,
1. Construct machines M1 and M2:

M1 = “On any input,
1. Accept”
M2 = “On any input,
1. Run M on w. If it accepts, accept”

2. Output M1, M2”
So, on input x = M, w, G computes M1, M2

as g(x). What is the property of g(x)?



What we have learnt
•HALTTM, ETM, REGULARTM, EQTM, PCP

are undecidable (reduction from ATM)
•ALBA is decidable (finite test cases)
•ELBA and ALLCFG are undecidable

(reduction from ATM via computation
history)

•Computable function, mapping
reducibility

•EQTM and EQ’TM are non-recognizable,
(reduction from A’TM)



Language Hierarchy (revisited)

Set of Regular
Language

Set of Context-
Free Language

Set of Languages (= set of “set of strings”)

{0x1y}

{0n1n}

{0n1n2n}
{w with even |w|}

{w | w = wR}

{ww}

Set of Decidable
Language

Set of Recognizable
Language

ATM

EQTM

EQ’TM

A’TM



Next Time

•Complexity Theory
–To classify the problems based on the

resources (time or memory usage)


