CS5371 Theory of Computation Lecture 15: Computability VI (Post's Problem, Reducibility)

# Objectives

- In this lecture, we introduce Post's correspondence problem, which gives an undecidable language which is based on dominos
- We also introduce computable functions, which allows us to look at reduction in a formal way

### Post's Correspondence Problem

- Let P be a finite set of dominoes  $\{d_1, d_2, ..., d_k\}$ , each piece of domino  $d_i$  consists of a top string  $t_i$  and a bottom string  $b_i$
- A match in P is a sequence i1, i2,..., ij (allowing repeats) such that  $t_{i1} t_{i2} ... t_{ij} = b_{i1} b_{i2} ... b_{ij}$ . That is, we can find a sequence of dominoes such that the concatenation of the top strings is equal to the concatenation of the bottom strings

### Post's Correspondence (2)

# Let PCP be the language $\{\langle P \rangle \mid P \text{ is a set of dominoes with a match}\}$

Theorem: PCP is undecidable

### Post's Correspondence (3)

Before we do that, let us modified the problem a bit... We require a match is this problem must start with the first domino

#### Let MPCP be the language

 $\{\langle P \rangle \mid P \text{ is a set of dominoes with a match starting with the first domino}\}$ 

Theorem: MPCP is undecidable

# Proving MPCP

Proof Idea:

Prove by reducing  $A_{TM}$  to MPCP. That is, assuming MPCP is decidable, we then show  $A_{TM}$  is decidable.

On input M, w, let us design a set of dominoes, such that whenever M accepts w, there is a match, and whenever M does not accept w, there is no match

# Proving MPCP (2)

Difficulty: We need to correspond every possible (I.e., infinitely many) computation of TM just by using the dominos ...

Observation: From a configuration to the next configuration, the change is "local" -only around the tape head, and number of possible changes are finite

On input M, w, we design dominos such that M accepts w if and only if the match corresponds to an accepting computation history for M to accept w

# Proving MPCP (3)

- Let  $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{reject})$  and  $w = w_1 w_2 \dots w_n$
- Step 1: Put #  $| #q_0 w_1 w_2 ... w_n #$  as the first domino (the notation t|b denote t is the top string, and b is the bottom string)

Step 2: For every a,b in  $\Gamma$ , every q,r in Q where  $q \neq q_{reject}$ Create domino qa | br if  $\delta(q,a) = (r,b,R)$ 

# Proving MPCP (4)

Step 3: For every a,b,c in Γ, every q,r in Q
where q ≠ q<sub>reject</sub>
Create domino cqa | rcb if δ(q,a) = (r,b,L)
How to handle the boundary case (when
the tape head is at the leftmost end of
tape?)

Step 4: For every a in  $\Gamma$ , Create domino  $a \mid a$ 

### Proving MPCP (5)

Step 5: Create dominoes # | # and # | □#
Why do we need # | □#?
Step 6: For every a in Γ
Create dominoes aq<sub>accept</sub> | q<sub>accept</sub> and
q<sub>accept</sub>a | q<sub>accept</sub>

Step 7: For every a in Γ Create dominoes q<sub>accept</sub>## | #

# Proving MPCP (6)

We claim that MPCP has a match if and only if M accepts w. Thus, MPCP is undecidable (why? Can you construct a decider for  $A_{TM}$  based on a decider of MPCP?)

It remains to show PCP is undecidable ... We prove this by reducing MPCP to PCP

# Reducing MPCP to PCP

We use a trick to transform any MPCP problem to a PCP problem, while enforcing the match must start with the first domino

Before that, we introduce the following notation: for any string  $u = u_1 u_2 ... u_k$ 

\*u\* = \* 
$$u_1 * u_2 * ... * u_k *$$
  
u\* =  $u_1 * u_2 * ... * u_k *$   
\*u = \*  $u_1 * u_2 * ... * u_k$ 

## Reducing MPCP to PCP (2)

Let  $P' = \{d_1, d_2, \dots, d_k\}$  be the dominos in MPCP, with  $d_i$  consisting a top string  $t_i$  and bottom string  $b_i$ ;  $d_1$  is the first domino We construct P as follows: 1. Add  $*t_1 | *b_1 * t_0 P$ 2. Add  $*t_{j} | b_{j} * to P$ , for every j = 1, 2, ..., k3. Add \* to P

Thus, P has a match if and only if P' has a match starting with  $d_1$ 

### What is a Reduction?

# We have seen a lot of examples that applies reduction technique

Here, we give one formal way of defining reduction → This allows us to understand more about the power of reduction, and allows us to prove more results

The formal definition is based on computable functions (see next slides)

## **Computable Function**

- A Turing machine can compute a function as follows: at the beginning, the tape contains the input; once it halts, the tape contains the output
- A function f: Σ\* → Σ\* is a computable function if some TM exists such that for any input w, it halts with f(w) on its tape
  E.g., all arithmetic operations on integers are computable functions (try prove it at home)

# **Defining Reduction**

Definition: Language A is mapping reducible to language B, written as  $A \leq_m B$ , if there is a computable function  $f: \Sigma^* \rightarrow \Sigma^*$  such that for every w,

 $w \in A \iff f(w) \in B$ The function f is called the reduction of A to B

#### Some results

Theorem 1: If  $A \leq_m B$  and B is decidable, then A is decidable. (Why?)

Theorem 2: If  $A \leq_m B$  and A is undecidable, then B is undecidable.

#### Some results (2)

Theorem 3: If  $A \leq_m B$  and B is recognizable, then A is recognizable (Why?)

Theorem 4: If  $A \leq_m B$  and A is non-recognizable, then B is non-recognizable

## Examples (HALT<sub>TM</sub>)

# A long time ago, we showed how to reduce $A_{TM}$ to $HALT_{TM}$

To show this by mapping reduction, we want to find a computable function f that performs as follows:

If 
$$x = \langle M, w \rangle$$
, f(x) =  $\langle M', w' \rangle$ 

such that  $x \in A_{TM} \Leftrightarrow f(x) \in HALT_{TM}$ 

Else,  $f(x) = \varepsilon$  (or, pick any other string not in HALT<sub>TM</sub>)

# Examples (HALT<sub>TM</sub>)

- Then, f can be computed by the TM F below:
- **F** = "On input  $\langle \mathbf{M}, \mathbf{w} \rangle$ ,
- 1. Construct the machine M':
  - M' = "On input x
  - 1. Run M on x
  - 2. If M accepts, accept; Else, enter loop"
- 2. Output  $\langle M', w \rangle$
- Thus, f is a computable function, so that  $A_{\mathsf{TM}} \leq_{\mathsf{m}} \mathsf{HALT}_{\mathsf{TM}}$

# Examples (PCP)

# In PCP problem, we showed how to reduce $A_{TM}$ to MPCP

To show this by mapping reduction, we want to find a computable function f that:

If x = 
$$\langle M, w \rangle$$
, f(x) =  $\langle P \rangle$ 

such that  $x \in A_{TM} \Leftrightarrow f(x) \in MPCP$ 

Else,  $f(x) = \varepsilon$  (or any  $\langle P \rangle$  not in MPCP) We can construct a TM that computes f (how?). Thus,  $A_{TM} \leq_m MPCP$ 

## Examples (PCP)

Also, we showed how to reduce MPCP to PCP To show this by mapping reduction, we want to find a computable function g that: If  $x = \langle P \rangle$ ,  $q(x) = \langle P' \rangle$ such that  $x \in MPCP \iff g(x) \in PCP$ Else,  $q(x) = \varepsilon$ We can construct a TM that computes g, so that  $PCP \leq_m PCP$ 

### Examples (PCP)

Combining the two examples, we can argue that the function h = g o f is also a computable function (why?), and has the property that:

 $x \in A_{TM} \iff h(x) \in PCP \text{ (why?)}$ 

Thus,  $A_{TM} \leq_m PCP$ . By Theorem 1, we conclude that PCP is undecidable

# Examples ( $E_{TM}$ )

When we show  $E_{TM}$  is undecidable, our proof is by reducing  $A_{TM}$  to  $E_{TM}$ Let us recall a bit how we do so: On given any input  $\langle M, w \rangle$ , we construct a TM M' such that if M accepts w, then  $L(M') = \{w\}$ if M not accept w, then  $L(M') = \{ \}$ This in fact gives us a computable function f reducing  $A_{TM}$  to "complement of  $E_{TM}$ "

# Examples $(E_{TM})$

I.e., we have a computable function f that:  $x \in A_{TM} \Leftrightarrow f(x) \notin E_{TM}$ ,

#### or equivalently, $x \in A_{TM} \iff f(x) \in E'_{TM}$

where  $E'_{TM}$  denotes the complement of  $E_{TM}$ Thus,  $A_{TM} \leq_m E'_{TM}$ , which still implies  $E_{TM}$  is undecidable (why?)

Question: Can we prove the above by finding a mapping reduction of  $A_{TM}$  to  $E_{TM}$ ?

# Examples $(E_{TM})$

... the answer is NO (Exercise 5.5)

Proof: Suppose on the contrary that  $A_{TM} \leq_m E_{TM}$ . Then, we have  $A'_{TM} \leq_m E'_{TM}$  (why?).

However,  $E'_{TM}$  is recognizable (why?) but  $A'_{TM}$  is not recognizable...

Thus, contradiction occurs (where?) and we conclude that no reduction of  $A_{TM}$  to  $E_{TM}$  exists

We have seen one example of a non-Turing recognizable language: A'<sub>TM</sub> Define: A language is co-recognizable if its complement is recognizable.

Then, we have:

Theorem: EQ<sub>TM</sub> is not recognizable, and not co-recognizable. That is, EQ<sub>TM</sub> is not recognizable, and EQ'<sub>TM</sub> is not recognizable.

Proof: We first show that  $A_{TM} \leq_m EQ'_{TM}$ . If this can be shown, we equivalently has shown that  $A'_{TM} \leq_m EQ_{TM}$  (why?) and proved that  $EQ_{TM}$  is not recognizable.

To show  $A_{TM} \leq_m EQ'_{TM}$ , we construct the TM F giving the desired reduction f as follows (see next slide):

- **F** = "On input  $\langle M, w \rangle$ ,
- 1. Construct machines M1 and M2:
  - M1 = "On any input,
  - 1. Reject"
  - M2 = "On any input,
  - 1. Run M on w. If it accepts, accept"
- 2. Output  $\langle M1, M2 \rangle$ "

So, on input x =  $\langle M, w \rangle$ , F computes  $\langle M1, M2 \rangle$ as f(x). What is the property of f(x)?

Next, we show that  $A_{TM} \leq_m EQ_{TM}$ . If this can be shown, we equivalently has shown that  $A'_{TM} \leq_m EQ'_{TM}$  and proved that  $EQ'_{TM}$  is not recognizable.

To show  $A_{TM} \leq_m EQ_{TM}$ , we construct the TM G giving the desired reduction g as follows (see next slide):

- $G = "On input \langle M, w \rangle,$
- 1. Construct machines M1 and M2:
  - M1 = "On any input,
  - 1. Accept"
  - M2 = "On any input,
  - 1. Run M on w. If it accepts, accept"
- 2. Output  $\langle M1, M2 \rangle$ "

So, on input x =  $\langle M, w \rangle$ , G computes  $\langle M1, M2 \rangle$ as g(x). What is the property of g(x)?

### What we have learnt

- HALT<sub>TM</sub>,  $E_{TM}$ , REGULAR<sub>TM</sub>, EQ<sub>TM</sub>, PCP are undecidable (reduction from  $A_{TM}$ )
- A<sub>LBA</sub> is decidable (finite test cases)
- $E_{LBA}$  and  $ALL_{CFG}$  are undecidable (reduction from  $A_{TM}$  via computation history)
- Computable function, mapping reducibility
- EQ<sub>TM</sub> and EQ'<sub>TM</sub> are non-recognizable, (reduction from  $A'_{TM}$ )

### Language Hierarchy (revisited)

Set of Languages (= set of "set of strings")



### Next Time

- Complexity Theory
  - To classify the problems based on the resources (time or memory usage)