CS5371 Theory of Computation Lecture 14: Computability V (Prove by Reduction)

Objectives

- In this lecture, we investigate more undecidable languages
- Instead of proving directly by the diagonalization method, we reduce the problem of deciding A_{TM} to the problem of deciding a language B
- Precisely, we show that if we know how to decide B (i.e., B is decidable), so can A_{TM} . In this way, we show that language B is undecidable

Halting Problem

- Recall that A_{TM} is the language $\{\langle M, w \rangle \mid M \text{ is a TM that accepts } w\},\$ which is undecidable
- Let $HALT_{TM}$ be the language $\{\langle M, w \rangle \mid M \text{ is a TM that halts on } w\}$

Theorem: $HALT_{TM}$ is undecidable

Halting Problem (2)

Proof Idea: Prove by reducing A_{TM} to HALT_{TM}. That is, assuming HALT_{TM} is decidable, we then show A_{TM} is decidable. Let us assume we have a TM R that decides HALT_{TM}. (So, what can R do?) Now, R will accept $\langle M, w \rangle$ if and only if M halts on w. Can we use R to get another TM S that accepts $\langle M, w \rangle$ if and only if M accepts w?

Halting Problem (3)

Proof Idea: Yes! On the input (M, w), the TM S uses TM R to check if M will halt on w. If not, we can immediately reject (M, w) since M does not accept w. (why?) If yes, we run M on w. The execution

must halt, so that there are two cases.

- If M accepts w, S accepts $\langle M, w \rangle$
- If M rejects w, S rejects $\langle M, w \rangle$

So, what are the strings that S accepts??

Halting Problem (4)

- Let us construct the desired TM S:
- **S** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
- 1. Run R on input $\langle M, w \rangle$
- 2. If R rejects, S rejects
- 3. If R accepts, simulate M on w
- 4. If M accepts w, S accepts. Else, S rejects"

Halting Problem (5)

- So, if R is a decider, S is a decider (why?)
- As no decider S can exist, no decider R can exist
- Thus, we conclude that HALT_{TM} is undecidable

Emptiness Test for TM

• Let E_{TM} be the language $\{\langle M \rangle \mid M \text{ is a TM and } L(M) = \{\}\}$

Theorem: E_{TM} is undecidable

Emptiness Test for TM (2)

- Proof Idea: Prove by reducing A_{TM} to E_{TM} . That is, assuming E_{TM} is decidable, we then show A_{TM} is decidable.
- Let us assume we have a TM R that decides E_{TM} . (So, what can R do?)
- Now, R will accept $\langle M \rangle$ if and only if L(M) is empty. Can we use R to get another TM S that accepts $\langle M, w \rangle$ if and only if M accepts w?

Emptiness Test for TM (3)

Proof Idea: Very tricky..... On the input $\langle M, w \rangle$, we construct another TM M' based on $\langle \mathbf{M}, \mathbf{w} \rangle$ with the following property: If M accepts w, L(M') is not empty If M does not accept w, L(M') is empty Why do we want to construct such an M'? To reduce the problem of deciding whether M accepts w to the problem of deciding whether L(M') is empty

Emptiness Test for TM (4)

Proof Idea: Can we find such an M'? Let us find M' with the following property: If M accepts w, L(M') is {w} If M does not accept w, L(M') is empty Consider the following TM M':

- M' = "On input x,
 - 1. If $x \neq w$, reject

2. Run M on x (= w). If M accepts, accept" Question: What is L(M')?

Emptiness Test for TM (5)

Let us construct the desired TM S:

- **S** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
- 1. Construct M' based on $\langle M, w \rangle$
- 2. Run R on $\langle M' \rangle$
- 3. If R accepts, S rejects $\langle M, w \rangle$ (why?)

4. If R rejects, S accepts $\langle M, w \rangle$ "

So, if R is a decider, so is S. (why?) As no decider for S exists, E_{TM} is undecidable

Testing TM with a certain property

Let $REGULAR_{TM}$ be the language $\{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is regular}\}$

Theorem: **REGULAR**_{TM} is undecidable

Testing TM with a certain property (2)

Proof Idea: Prove by reducing A_{TM} to REGULAR_{TM}. That is, assuming REGULAR_{TM} is decidable, we then show A_{TM} is decidable.

Let us assume we have a TM R that decides REGULAR_{TM}. (So, what can R do?) Can we use R to get another TM S that decides $\langle M, w \rangle$?

Testing TM with a certain property (3)

Proof Idea: On the input $\langle M, w \rangle$, we construct another TM M' based on $\langle M, w \rangle$ with the following property: If M accepts w, L(M') is regular If M not accept w, L(M') is not regular Why do we want to construct such an M'? To reduce the problem of deciding whether M accepts w to the problem of deciding whether L(M') is regular

Testing TM with a certain property (4)

- Proof Idea: Can we find such an M'? Let us find M' with the following property: If M accepts w, L(M') is {0,1}* If M does not accept w, L(M') is {0ⁿ1ⁿ} Consider the following TM M':
- M' = "On input x,
 - 1. If x has the form $O^n 1^n$, accept x

2. Else, run M on w. If M accepts, accept x" Question: What is L(M')? Testing TM with a certain property (5)

- Let us construct the desired TM S:
- **S** = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,
- 1. Construct M' based on $\langle M, w \rangle$
- 2. Run R on $\langle M' \rangle$
- 3. If R accepts, S accepts $\langle M, w \rangle$ (why?)
- 4. If R rejects, S rejects $\langle M, w \rangle$ "
- So, if R is a decider, so is S. (why?) As no decider for S exists, REGULAR_{TM} is undecidable

Testing TM with a certain property (6)

- We have shown that the language of all TMs having the property "L(M) = regular" is undecidable
- In fact, a general result, called Rice's Theorem, states that the language of all TMs having any specific property is undecidable (Problem 5.28)
- Check this at home!

Equality Test for TM

Let EQ_{TM} be the language { $\langle M_1, M_2 \rangle \mid M_1, M_2$ are TMs, and $L(M_1) = L(M_1)$ }

Theorem: EQ_{TM} is undecidable

Equality Test for TM (2)

Proof Idea: Prove by reducing E_{TM} to EQ_{TM} . That is, assuming EQ_{TM} is decidable, we then show E_{TM} is decidable.

Let us assume we have a TM R that decides EQ_{TM} . (So, what can R do?)

Can we use R to get another TM S that decides if L(M) is empty?

Equality Test for TM (3)

- Proof Idea: On the input $\langle M \rangle$, we construct two TMs M_1 and M_2 based on $\langle M \rangle$ with the following property:
 - If L(M) is empty, $L(M_1) = L(M_2)$
 - If L(M) not empty, $L(M_1) \models L(M_2)$
- In this way, we reduce the problem of deciding whether L(M) is empty to the problem of deciding whether the language of two TMs are equal

Equality Test for TM (4)

Proof Idea: Can we find such M_1 and M_2 ? Very easy!!! We set M_1 to be M, and M_2 to be a TM that rejects all strings.

Then, M₁ and M₂ has the desired property: If L(M) is empty, L(M₁) = L(M₂) If L(M) not empty, L(M₁) = L(M₂)

Equality Test for TM (5)

Let us construct the desired TM S:

- **S** = "On input $\langle M \rangle$,
- 1. Construct M_1 and M_2 based on $\langle M \rangle$
- 2. Run R on $\langle M_1, M_2 \rangle$
- 3. If R accepts, S accepts $\langle M \rangle$ (why?)

4. If R rejects, S rejects $\langle M \rangle$ "

So, if R is a decider, so is S. (why?) As no decider for S exists, EQ_{TM} is undecidable

Linear Bounded Automaton

Let us now look at languages relating to a new computation model call linear bounded automaton (LBA)

Definition: LBA is a restricted type of TM whose tape head is not allowed to move off the portion of the tape containing the initial input.

Fact: LBA is equivalent to a TM that can use (I.e., read or write) memory of size up to a constant factor of the input length

Linear Bounded Automaton (2)

Theorem: Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qngⁿ distinct configurations of M for a tape of length n

Proof: By simple counting... Recall that a configuration specifies the string in the tape (gⁿ choices in LBA), the position of tape head (n choices in LBA), and the current state (q choices in LBA).

Linear Bounded Automaton (3)

Corollary: On an input of length n, if the LBA M does not halt after qngⁿ steps, M cannot accept the input

Proof: The computation of M begins with the start configuration. When M performs a step, it goes from one configuration to another. If M does not halt after qngⁿ steps, some configuration has repeated. Then M will repeat this configuration over and over (why?) → loop

Acceptance by LBA

Let A_{LBA} be the language $\{\langle M, w \rangle \mid M \text{ is an LBA and } M \text{ accepts } w\}$

Theorem: A_{LBA} is decidable

Acceptance by LBA (2)

Proof: Let us construct a decider D:

D = "On input $\langle \mathbf{M}, \mathbf{w} \rangle$,

- 1. Simulate M on w for qng^n steps (n = |w|) or until it halts
- 2. If M halts and accepts w, D accepts
- 3. Else D rejects

Emptiness Test for LBA

Let E_{LBA} be the language { $\langle M \rangle$ | M is an LBA and L(M) = { } }

Theorem: E_{LBA} is undecidable

Emptiness Test for LBA (2)

- Proof Idea: Prove by reducing A_{TM} to E_{LBA} . That is, assuming E_{LBA} is decidable, we then show A_{TM} is decidable.
- Let us assume we have a TM R that decides E_{LBA} . (So, what can R do?)
- Now, R will accept $\langle M \rangle$ if and only if L(M) is empty. Can we use R to get another TM S that accepts $\langle M, w \rangle$ if and only if M accepts w?

Emptiness Test for LBA (3)

Proof Idea: The old idea On the input $\langle M, w \rangle$, we construct an LBA B based on $\langle M, w \rangle$ \mathbf{w} with the following property: If M accepts w, L(B) is not empty If M does not accept w, L(B) is empty Why do we want to construct such an B? To reduce the problem of deciding whether B accepts w to the problem of deciding whether L(B) is empty

Emptiness Test for LBA (4)

Proof Idea: ... Before we do so, let us recall that an accepting configuration of a TM is a configuration whose current state is q_{accept}

We define an accepting computation history to be a finite sequence of configurations $C_0, C_1, ..., C_k$ such that C_0 is the start configuration, each C_i follows legally from C_{i-1} , and finally C_k is an accepting configuration

Emptiness Test for LBA (5)

Proof Idea: That means, whenever $\langle M, w \rangle$ is in A_{TM} , there must be an accepting configuration history that M goes through as it accepts w

Back to our proof ...

We shall construct LBA B to accept one string whenever M accepts w, and accepts nothing whenever M does not accept w (Guess: what is this special string?)

Emptiness Test for LBA (6)

Proof Idea: The special string is the accepting computation history:

 $# C_0 # C_1 # C_2 # ... # C_k #$

The construction of **B** is easy:

- B = "On input x,
- Test if x is an accepting computation history for M to accept w
- 2. If yes, accept x
- 3. Else rejects

Emptiness Test for LBA (7)

Quick Quiz:

Q1: Can B be constructed in finite steps? Q2: What is L(B)? Q3: Is B an LBA?

Emptiness Test for LBA (8)

- Let us construct the desired TM S for A_{TM} : S = "On input $\langle M, w \rangle$,
 - 1. Construct LBA B based on $\langle M, w \rangle$
 - 2. Run R (LBA emptiness-tester) on $\langle B \rangle$
 - 3. If R accepts, S rejects $\langle M, w \rangle$ (why?)

4. If R rejects, S accepts $\langle M, w \rangle''$

So, if R is a decider, so is S. (why?) As no decider for S exists, E_{LBA} is undecidable

CFG Accepting All Strings

Let ALL_{CFG} be the language { $\langle G \rangle$ | G is a CFG and L(G) = Σ^* }

Theorem: ALL_{CFG} is undecidable

CFG Accepting All Strings (2)

Proof Idea: Prove by reducing A_{TM} to ALL_{CFG}. That is, assuming ALL_{CFG} is decidable, we then show A_{TM} is decidable. Let us assume we have a TM R that decides ALL_{CFG} . (So, what can R do?) Now, R will accept $\langle G \rangle$ if and only if L(G) accepts all strings. Can we use R to get another TM S that accepts $\langle M, w \rangle$ if and only if M accepts w?

CFG Accepting All Strings (3)

Proof Idea: The old idea On the input (M, w), we construct an CFG G based on (M, w) with the following property: If M accepts w, L(G) is not all strings If M does not accept w, L(G) is all strings (Guess: what are the missing strings when M accepts w?)

If M accepts w, we want L(G) contains all but any accepting computation histories for M to accept w

CFG Accepting All Strings (4)

- Proof Idea: How can we find this grammar G? Very tricky, but here is one way:
- Let G generates all strings that:
- 1. Do not start with C_0 (Note: C_0 is based on M,w)
- 2. Do not end with an accepting configuration 3. Some C_i does not follow legally from C_{i-1}

CFG Accepting All Strings (5)

Quick Quiz:

Q1: Does such a CFG G exist?
Q2: Can G be constructed in finite steps?
Q3: What is L(G)?
L(G) = all but accepting if M accepts w
L(G) = all strings if M does not accept w

CFG Accepting All Strings (6)

Let us construct the desired TM S for A_{TM} : S = "On input $\langle M, w \rangle$,

- 1. Construct CFG G based on $\langle M, w \rangle$
- 2. Run R (all-CFG-tester) on $\langle G \rangle$
- 3. If R accepts, S rejects $\langle M, w \rangle$ (why?)

4. If R rejects, S accepts $\langle M, w \rangle$ "

So, if R is a decider, so is S. (why?) As no decider for S exists, ALL_{CFG} is undecidable

Next Time

- Post's Correspondence Problem
 - An undecidable problem with dominos
- Computable functions
 - Another way of looking at reduction