
CS5371
Theory of Computation

Lecture 14: Computability V
(Prove by Reduction)



•In this lecture, we investigate more
undecidable languages

•Instead of proving directly by the
diagonalization method, we reduce the
problem of deciding ATM to the problem
of deciding a language B

•Precisely, we show that if we know how
to decide B (i.e., B is decidable), so can
ATM. In this way, we show that language
B is undecidable

Objectives



Halting Problem

Theorem: HALTTM is undecidable

•Recall that ATM is the language
{ M, w| M is a TM that accepts w},

which is undecidable

•Let HALTTM be the language
{ M, w| M is a TM that halts on w}



Halting Problem (2)

Proof Idea: Prove by reducing ATM to
HALTTM. That is, assuming HALTTM is
decidable, we then show ATM is decidable.

Let us assume we have a TM R that decides
HALTTM. (So, what can R do?)

Now, R will accept M, wif and only if M
halts on w. Can we use R to get another
TM S that accepts M, wif and only if M
accepts w?



Halting Problem (3)

Proof Idea: Yes! On the input M, w, the
TM S uses TM R to check if M will halt on
w. If not, we can immediately reject M,
wsince M does not accept w. (why?)
If yes, we run M on w. The execution
must halt, so that there are two cases.

•If M accepts w, S accepts M, w
•If M rejects w, S rejects M, w
So, what are the strings that S accepts??



Halting Problem (4)

Let us construct the desired TM S:
S = “On input M, w,
1. Run R on input M, w
2. If R rejects, S rejects
3. If R accepts, simulate M on w
4. If M accepts w, S accepts. Else, S

rejects”



Halting Problem (5)

•So, if R is a decider, S is a decider (why?)
•As no decider S can exist, no decider R

can exist
•Thus, we conclude that HALTTM is

undecidable



Emptiness Test for TM

Theorem: ETM is undecidable

•Let ETM be the language
{ M| M is a TM and L(M) = { } }



Emptiness Test for TM (2)

Proof Idea: Prove by reducing ATM to ETM.
That is, assuming ETM is decidable, we
then show ATM is decidable.

Let us assume we have a TM R that decides
ETM. (So, what can R do?)

Now, R will accept Mif and only if L(M) is
empty. Can we use R to get another TM S
that accepts M, wif and only if M
accepts w?



Emptiness Test for TM (3)

Proof Idea: Very tricky…… On the input
M, w, we construct another TM M’based
on M, wwith the following property:
If M accepts w, L(M’) is not empty
If M does not accept w, L(M’) is empty

Why do we want to construct such an M’?
To reduce the problem of deciding
whether M accepts w to the problem of
deciding whether L(M’) is empty



Emptiness Test for TM (4)

Proof Idea: Can we find such an M’? Let us
find M’with the following property:
If M accepts w, L(M’) is {w}
If M does not accept w, L(M’) is empty

Consider the following TM M’:
M’= “On input x,

1. If x w, reject
2. Run M on x (= w). If M accepts, accept”

Question: What is L(M’)?



Emptiness Test for TM (5)

Let us construct the desired TM S:
S = “On input M, w,
1. Construct M’based on M, w
2. Run R on M’
3. If R accepts, S rejects M, w (why?)
4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. (why?) As no
decider for S exists, ETM is undecidable



Testing TM with a certain
property

Theorem: REGULARTM is undecidable

Let REGULARTM be the language
{ M| M is a TM and L(M) is regular}



Testing TM with a certain
property (2)

Proof Idea: Prove by reducing ATM to
REGULARTM. That is, assuming
REGULARTM is decidable, we then show
ATM is decidable.

Let us assume we have a TM R that decides
REGULARTM. (So, what can R do?)

Can we use R to get another TM S that
decides M, w?



Testing TM with a certain
property (3)

Proof Idea: On the input M, w, we
construct another TM M’based on M, w
with the following property:
If M accepts w, L(M’) is regular
If M not accept w, L(M’) is not regular

Why do we want to construct such an M’?
To reduce the problem of deciding
whether M accepts w to the problem of
deciding whether L(M’) is regular



Testing TM with a certain
property (4)

Proof Idea: Can we find such an M’? Let us
find M’with the following property:
If M accepts w, L(M’) is {0,1}*
If M does not accept w, L(M’) is {0n1n}

Consider the following TM M’:
M’= “On input x,

1. If x has the form 0n1n, accept x
2. Else, run M on w. If M accepts, accept x”

Question: What is L(M’)?



Testing TM with a certain
property (5)

Let us construct the desired TM S:
S = “On input M, w,
1. Construct M’based on M, w
2. Run R on M’
3. If R accepts, S accepts M, w (why?)
4. If R rejects, S rejects M, w”

So, if R is a decider, so is S. (why?) As no
decider for S exists, REGULARTM is
undecidable



Testing TM with a certain
property (6)

•We have shown that the language of all
TMs having the property “L(M) = regular”
is undecidable

•In fact, a general result, called Rice’s
Theorem, states that the language of all
TMs having any specific property is
undecidable (Problem 5.28)

•Check this at home!



Equality Test for TM

Theorem: EQTM is undecidable

Let EQTM be the language
{ M1, M2| M1, M2 are TMs, and L(M1) =

L(M1) }



Equality Test for TM (2)

Proof Idea: Prove by reducing ETM to EQTM.
That is, assuming EQTM is decidable, we
then show ETM is decidable.

Let us assume we have a TM R that decides
EQTM. (So, what can R do?)

Can we use R to get another TM S that
decides if L(M) is empty?



Equality Test for TM (3)

Proof Idea: On the input M, we construct
two TMs M1 and M2 based on Mwith the
following property:
If L(M) is empty, L(M1) = L(M2)
If L(M) not empty, L(M1) != L(M2)

In this way, we reduce the problem of
deciding whether L(M) is empty to the
problem of deciding whether the language
of two TMs are equal



Equality Test for TM (4)

Proof Idea: Can we find such M1 and M2?
Very easy!!! We set M1 to be M, and M2 to
be a TM that rejects all strings.

Then, M1 and M2 has the desired property:
If L(M) is empty, L(M1) = L(M2)
If L(M) not empty, L(M1) = L(M2)



Equality Test for TM (5)

Let us construct the desired TM S:
S = “On input M,
1. Construct M1 and M2 based on M
2. Run R on M1, M2
3. If R accepts, S accepts M (why?)
4. If R rejects, S rejects M”

So, if R is a decider, so is S. (why?) As no
decider for S exists, EQTM is undecidable



Linear Bounded Automaton
Let us now look at languages relating to a

new computation model call linear bounded
automaton (LBA)

Definition: LBA is a restricted type ofTM
whose tape head is not allowed to move
off the portion of the tape containing the
initial input.

Fact: LBA is equivalent to a TM that can use
(I.e., read or write) memory of size up to
a constant factor of the input length



Linear Bounded Automaton (2)

Proof: By simple counting… Recall that a
configuration specifies the string in the
tape (gn choices in LBA), the position of
tape head (n choices in LBA), and the
current state (q choices in LBA).

Theorem: Let M be an LBA with q states and
g symbols in the tape alphabet. There
are exactly qngn distinct configurations of
M for a tape of length n



Linear Bounded Automaton (3)

Proof: The computation of M begins with the
start configuration. When M performs a
step, it goes from one configuration to
another. If M does not halt after qngn

steps, some configuration has repeated.
Then M will repeat this configuration over
and over (why?)  loop

Corollary: On an input of length n, if the LBA
M does not halt after qngn steps, M
cannot accept the input



Acceptance by LBA

Theorem: ALBA is decidable

Let ALBA be the language
{M, w| M is an LBA and M accepts w }



Acceptance by LBA (2)

Proof: Let us construct a decider D:
D = “On input M, w,
1. Simulate M on w for qngn steps (n = |w|)

or until it halts
2. If M halts and accepts w, D accepts
3. Else D rejects



Emptiness Test for LBA

Theorem: ELBA is undecidable

Let ELBA be the language
{M| M is an LBA and L(M) = { } }



Emptiness Test for LBA (2)

Proof Idea: Prove by reducing ATM to ELBA.
That is, assuming ELBA is decidable, we
then show ATM is decidable.

Let us assume we have a TM R that decides
ELBA. (So, what can R do?)

Now, R will accept Mif and only if L(M) is
empty. Can we use R to get another TM S
that accepts M, wif and only if M
accepts w?



Emptiness Test for LBA (3)

Proof Idea: The old idea …… On the input
M, w, we construct an LBA B based on M,
wwith the following property:
If M accepts w, L(B) is not empty
If M does not accept w, L(B) is empty

Why do we want to construct such an B?
To reduce the problem of deciding
whether B accepts w to the problem of
deciding whether L(B) is empty



Emptiness Test for LBA (4)

Proof Idea: …Before we do so, let us recall
that an accepting configuration of a TM is
a configuration whose current state is
qaccept

We define an accepting computation
history to be a finite sequence of
configurations C0, C1, …, Ck such that C0 is
the start configuration, each Ci follows
legally from Ci-1, and finally Ck is an
accepting configuration



Emptiness Test for LBA (5)

Proof Idea: That means, whenever M, wis
in ATM, there must be an accepting
configuration history that M goes through
as it accepts w
Back to our proof…
We shall construct LBA B to accept one
string whenever M accepts w, and accepts
nothing whenever M does not accept w
(Guess: what is this special string?)



Emptiness Test for LBA (6)

Proof Idea: The special string is the
accepting computation history:

# C0 # C1 # C2 # … # Ck #
The construction of B is easy:
B = “On input x,
1. Test if x is an accepting computation

history for M to accept w
2. If yes, accept x
3. Else rejects



Emptiness Test for LBA (7)

Quick Quiz:

Q1: Can B be constructed in finite steps?
Q2: What is L(B)?
Q3: Is B an LBA?



Emptiness Test for LBA (8)

Let us construct the desired TM S for ATM:
S = “On input M, w,
1. Construct LBA B based on M, w
2. Run R (LBA emptiness-tester) on B
3. If R accepts, S rejects M, w (why?)
4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. (why?) As no
decider for S exists, ELBA is undecidable



CFG Accepting All Strings

Theorem: ALLCFG is undecidable

Let ALLCFG be the language
{G| G is a CFG and L(G) = * }



CFG Accepting All Strings (2)

Proof Idea: Prove by reducing ATM to
ALLCFG. That is, assuming ALLCFG is
decidable, we then show ATM is decidable.

Let us assume we have a TM R that decides
ALLCFG. (So, what can R do?)

Now, R will accept Gif and only if L(G)
accepts all strings. Can we use R to get
another TM S that accepts M, wif and
only if M accepts w?



CFG Accepting All Strings (3)

Proof Idea: The old idea …… On the input
M, w, we construct an CFG G based on
M, wwith the following property:
If M accepts w, L(G) is not all strings
If M does not accept w, L(G) is all strings

(Guess: what are the missing strings when
M accepts w? )

If M accepts w, we want L(G) contains all
but any accepting computation histories
for M to accept w



CFG Accepting All Strings (4)

Proof Idea: How can we find this grammar G?
Very tricky, but here is one way:

Let G generates all strings that:
1. Do not start with C0 (Note: C0 is based on

M,w)
2. Do not end with an accepting configuration
3. Some Ci does not follow legally from Ci-1



CFG Accepting All Strings (5)

Quick Quiz:

Q1: Does such a CFG G exist?
Q2: Can G be constructed in finite steps?
Q3: What is L(G)?

L(G) = all but accepting if M accepts w
L(G) = all strings if M does not accept w



CFG Accepting All Strings (6)

Let us construct the desired TM S for ATM:
S = “On input M, w,
1. Construct CFG G based on M, w
2. Run R (all-CFG-tester) on G
3. If R accepts, S rejects M, w (why?)
4. If R rejects, S accepts M, w”

So, if R is a decider, so is S. (why?) As no
decider for S exists, ALLCFG is
undecidable



Next Time

•Post’s Correspondence Problem
–An undecidable problem with dominos

•Computable functions
–Another way of looking at reduction


