
CS5371
Theory of Computation

Lecture 12: Computability III
(Decidable Languages relating
to DFA, NFA, and CFG)



•Recall that decidable languages are
languages that can be decided by TM
(that means, the corresponding TM will
accept or reject correctly, never loops)

•In this lecture, we investigate some
decidable languages that are related to
DFA, NFA, and CFG
–Testing Acceptance, Emptiness, or Equality

•Also, we show how TM can simulate CFG

Objectives



Acceptance by DFA
Let ADFA be the language

{ B, w| B is a DFA that accepts w}

where B, wdenotes the encoding of B followed by w

E.g., if D is a DFA accepting even length strings,
and D’is a DFA accepting odd length strings,
then, D, 01, D, 0000, D’, 1, D’, 111are
strings in ADFA , but D, 1, D, 000, D’, 1000,
D’, 11are not



Acceptance by DFA (2)

Theorem 1: ADFA is a decidable language

Proof: We construct a TM M that decides
ADFA as follows:

M = “On input B, w
1. Simulate B on input w
2. If the simulation ends in an accept
state, accept. Else, reject ”



Acceptance by DFA (3)

Q1: How can M perform the above steps??
•M uses 3 tapes; initially, Tape 1 stores the

input B, w, the other two all blanks
•Then, M copies w into Tape 2, and write the

start state of B in Tape 3
•Usage: Tape head of Tape 2 stores next char

in w for B to read, Tape 3 stores the current
state

•Based on Tapes 2 and 3, M moves back and
forth Tape 1 to know how B performs each
transition, and update the tapes accordingly



Acceptance by DFA (4)

Q2: Why is M a decider for ADFA ?
•For any input B, w, M can simulate B so that

each transition in B takes finite number of
steps in M

•To know which state B is at after reading w,
there are only |w| transitions in B

•Thus, M takes finite number of steps to know
if B accepts w or not. Then, M can decide (no
infinite loop) whether to accept or reject B, w



Acceptance by NFA
Let ANFA be the language

{ B, w| B is an NFA that accepts w}

Theorem 2: ANFA is a decidable language



Acceptance by NFA (2)

Proof:
[Solution 1] We can use the same idea

when we simulate NTM by TM, so that
we give a TM that decides ANFA.
Precisely, we need to try every possible
branch of computation, but only of
length up to b|w|, where b is the
branching factor of B (why??)



Acceptance by NFA (3)

[Solution 2 (easier)] We re-use the TM M
that decides ADFA to give a TM N that
decides ANFA:

N = “On input B, w
1. Convert B to an equivalent DFA C
2. Run TM M on C, w
3. If M accepts, accept. Else, reject”



Acceptance by NFA (4)

Q1: How can N perform the above steps??
•N uses 5 tapes; initially, Tape 1 stores the

input B, w, Tape 2 stores the encoding of M,
the other two all blanks

•Then, N converts B to C and store it in Tape 3
• N then consults M in Tape 2, to know how M

simulates C running on w
•Tapes 4 and 5 can be used to store the current

state of C, and the next char for C to read, as
N simulates M to simulate C



Acceptance by NFA (5)

Q2: Why is N a decider for ANFA ?
•For any input B, w, N convert B into the

equivalent DFA C in finite number of steps
•Then, M takes finite number of steps to know

if C accepts w or not. Thus, N can decide (no
infinite loop) whether to accept or reject B, w



Acceptance by
Regular Expression (RE)

Let ARE be the language
{ R, w| R is an RE that generates w }

Theorem 3: ARE is a decidable language



Acceptance by RE (2)

Proof: W give a TM P that decides ARE:
P = “On input R, w
1. Convert R to an equivalent NFA A
2. Run TM N of Theorem 2 (the ‘NFA-
string checker’) on A, w

3. If N accepts A, w, accept. Else, reject”



Emptiness Test for DFA
Let EDFA be the language

{ B| B is a DFA and L(B) = { } }

Theorem 4: EDFA is a decidable language

Observation: A DFA accepts no string if
and only if we cannot reach any accept
state from the start state by following
transition arrows



Emptiness Test for DFA (2)
Proof: We use similar idea as we test if a

graph G is connected. Precisely, we give
a TM T that decides EDFA as follows:

T = “On input B
1. Mark the start state of B
2. Repeat until no new states are marked
•2a. Mark any state that has a transition

coming into it from a marked state
3. If no accept state of B is marked,
accept. Else, reject”



Equality Test for DFA
Let EQDFA be the language
{ A,B| A and B are DFAs and L(A) = L(B) }

Theorem 5: EQDFA is a decidable language

Hint: Let C be a DFA that accepts strings
that is in L(A) but not in L(B), and also
strings that is in L(B) but not in L(A).
Then, L(C) ={ } if and only if L(A) = L(B)



Equality Test for DFA (2)

Proof: Based on the hint, we give a TM F
that decides EQDFA as follows:

F = “On input A,B
1. Construct C (how?)
2. Run TM T of Theorem 4 (the
‘Emptiness-Tester for DFA’) on C
3. If T accepts, accept. Else, reject”



Acceptance by CFG
Let ACFG be the language

{ G, w| G is a CFG that generates w }

Theorem 6: ACFG is a decidable language

Hint: We need to avoid testing infinite
derivations… If G is in Chomsky normal
form, any derivation of w takes exactly
2|w| - 1 derivation steps



Acceptance by CFG (2)

Proof: Based on the hint, we give a TM X
that decides ACFG as follows:

X = “On input G, w
1. Convert G into G’= (V,T,R,S) in CNF
2. Generate all derivations of G’with 2|w|-1
derivation steps (# of such derivations 
(4|V||T|)2|w|-1. That is, a finite number)

3. If any derivation generates w, accept.
Else, reject”



Emptiness Test for CFG
Let ECFG be the language

{ G| G is a CFG and L(G) = { } }

Theorem 7: ECFG is a decidable language

Observation: Suppose that we can mark
all the variables in G that can generate a
string of terminals. Then, L(G) = { } if
the start variable is not marked



Emptiness Test for CFG (2)
Proof: We use similar idea as we test if a

graph G is connected. Precisely, we give
a TM R that decides ECFG as follows:

R = “On input G
1. Mark all terminals of G
2. Repeat until no new variable is marked

2a. Mark variable A if G has a rule A 
U1U2…Uk and all Ui’s are marked

3. If the start variable is not marked,
accept. Else, reject”



Equality Test for CFG?
Let EQCFG be the language
{ A,B| A and B are CFGs and L(A) = L(B) }

Is EQCFG is a decidable language?

Unfortunately, no…(if you recall Tutorial 3)
•Note that we cannot apply similar trick as we

prove EQDFA is decidable
We shall show EQCFG is undecidable later…



TM can simulate CFG
•Previously (a long time ago), we have

shown that given a DFA, we can
always find a CFG that recognizes
the same language

•How about, if we are given a CFG, can
we find a TM that recognizes the
same language?
–The answer is YES!



TM can simulate CFG (2)

Theorem 8: Given a CFG G, we can
construct a TM that recognizes the
same language. In other words, every
CFL is a decidable language



TM can simulate CFG (3)

Proof: We find a TM MG with Gstored in
it initially; MG then performs as follows:

MG = “On input w
1. Run TM X of Theorem 6 (the ‘CFG-
string checker’) on G, w
2. If X accepts G, w, accept. Else,
reject ”

We can see that MG recognizes the same
language as G. This completes the proof



Language Hierarchy (revisited)

Set of Regular
Language

Set of Context-
Free Language

Set of Languages (= set of “set of strings”)

{0x1y}

{0n1n}

{0n1n2n}
{w with even |w|}

{w | w = wR}

{ww}

Set of Decidable
Language

Set of Recognizable
Language

??

???



Next Time

•Undecidable Languages
–Languages that CANNOT be decided by

ANY Turing Machine
–Example 1: Turing-recognizable, but not

Turing-decidable
–Example 2: Non-Turing recognizable

(that is, even more difficult!!)


