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Theory of Computation

Lecture 11: Computability Theory II
(TM Variants, Church-Turing Thesis)



Objectives

•Variants of Turing Machine
–With Multiple Tapes
–With Non-deterministic Choice
–With a Printer

•Introduce Church-Turing Thesis
–Definition of Algorithm



Variants of TM
•Different definition from the original TM
•However, they recognize the same set of

languages as TM (Just like NFA vs DFA)
•One example is: TM such that the tape

head can move left, right, or it can stay
–This TM with stay put, recognize the same set

of languages as TM (Why?)
–Because by replacing each stay transition with

two transitions (one right and one left), we can
convert this TM into an equivalent TM without
stay put.

•There are more variants…



Variant 1: Multi-Tape TM

control

1010

= blank symbols

aababa

baba

It is like a TM, but with several tapes



Multi-tape TM (2)

•Initially, the input is written on the
first tape, and all other tapes blank

•The transition function of a k-tape TM
has the form

: Q x k  Q x k x { L, R, S }k

•Obviously, given a TM, we can find a k-
tape TM that recognizes the same
language

•How about the converse?



Multi-tape TM (3)

Theorem: Given a k-tape TM, we can find
an equivalent TM (that is, a TM that
recognizes the same language).

Proof: Let M be the k-tape TM (with
multiple tape). We show how to convert
M into some TM S (with single tape).



Multi-tape TM (4)

1. To simulate k tapes, S separates the
contents of different tapes by #

2. To simulate the tape heads, S marks the
symbol under each tape head with a star
(The starred symbols are just new
symbols in the tape alphabet of S)

We can now think of the tape of S
containing k “virtual”tapes and tape heads



M

1010

aaa

baba

S

#a b* aa a a* # b #1010*#

Note: M = {0,1,a,b,} and S = {0,1,a,b,,#,0*,1*,a*,b*,*,#*}

E.g.



Multi-tape TM (5)

On input w = w1w2…wn

Step 1. S stores in the tape
# w1

*w2…wn # *# *# …#
Step 2. To simulate a single move, S scans from

the first # to the (k+1)st #, to find out what
symbols are under each virtual tape head.
Then, S goes back to the first # and updates
the virtual tapes according to the way that M’s
transition function will do



Multi-tape TM (5)

Questions: (1) What does it mean if the virtual
tape head, after the transition, has moved to
# ? (2) Then, what should we do?

Answer:
(1) This means that we have moved to the unread

blank portion of the virtual tape.
(2) In this case, we overwrite # by *, shifts the

tape contents of S from this cell (i.e., #) to
the rightmost #, one unit to the right. After
that, comes back and continues the simulation



Variant 2: NTM

control
= blank symbols

baba

It is like a TM, but with non-deterministic control



NTM (2)

•The transition function of NTM has the form
: Q x  2Q x x { L, R }

•For a given input w, we can describe the
computation of NTM as a tree, where the root
represents the start configuration, and the
children of a node C are the possible
configurations that can be yielded by C

•The NTM accepts the input w if some branch
of computation (i.e., a path from root to some
node) leads to the accept state



NTM (3)

Theorem: Given an NTM, we can find a TM
that recognizes the same language.

Proof: Let N be the NTM. We show how to
convert N into some TM D. The idea is to
simulate N by trying all possible branches
of N’s computation. If one branch leads
to an accept state, D accepts. Otherwise,
D’s simulation will not terminate.



NTM (4)

•To simulate the search, we use a 3-tape
TM for D
•first tape stores the input string
•second tape is a working memory, and
•third tape “encodes”which branch to

search
•What is the meaning of “encode”?



NTM (5)

•Let b = |Q x x { L, R }|, which is the
maximum number of children of a
node in N’s computation tree.

•We encode a branch in the tree by a
string over the alphabet {1,2,…,b}.
–E.g., 231 means starting from the root r,

goes to the r’s 2nd child c, then goes to
c’s 3rd child d, then goes to d’s 1st child



NTM (6)

On input string w,
Step 1. D stores w in Tape 1 and in Tape 3
Step 2. Repeat

2a. Copy Tape 1 to Tape 2
2b. Simulate N using Tape 2, with the branch

of computation specified in Tape 3.
Precisely, in each step, D checks the
next symbol in Tape 3 to decide which
choice to make. (Special case …)



NTM (7)

2b [Special Case].
1. If this branch of N enters accept state,

accepts w
2. If no more chars in Tape 3, or a choice

is invalid, or if this branch of N enters
reject state, D aborts this branch

2c. Copy Tape 1 to Tape 2, and update Tape 3
to store the next branch (in Breadth-
First Search order)



NTM (8)
•In the simulation, D will first examine the

branch (i.e., root only), then the branch 1
(i.e., root and 1st child only), then the branch 2,
and then 3, 4, …, b, then the branches 11, 12,
13, …, 1b, then 21, 22, 23, …, 2b, and so on,
until the examined branch of N enters an
accept state

•If N does not accept w, the simulation of D
will run forever

•Note that we cannot use DFS (depth-first
search) instead of BFS (why?)



Variant 3: Enumerator

control

= blank symbols

baba

It is like a TM, but with a printer

printer

aa
cc

aba



Enumerator (2)

•An enumerator E starts with a blank input
tape

•Whenever the TM wants to print something,
it sends the string to the printer

•If the enumerator does not halt, it may print
an infinite list of strings

•The language of E = the set of strings that
are (eventually) printed by E
–Note: E may generate strings in any order, and

with repetitions



Enumerator (3)

Theorem: Let L be a language. (1) If L is
enumerated by some enumerator, there
is a TM that recognizes L. (2) If L is
recognized by some TM, there is an
enumerator that enumerates L.



Enumerator (4)

Proof of (1): Let E be the enumerator that
enumerates L. We convert E into a TM M:

On input w:
Step 1. Run E. Whenever E wants to

print, compare the string with w.
If they are the same, accept w.
Otherwise, continue to run E.

Thus, M accepts exactly strings that is on E’s list.



Enumerator (5)

Proof of (2): Let M be the TM that recognizes
L . We use M to construct an enumerator E
that enumerates L:

Ignore the input (as E does not need an input):
Step 1. Repeat for i = 1,2,3,…(forever)

1a. Run M for i steps on the first i
strings in * (sorted by length, then
lex order) E.g., when = {0,1}, the
order of strings is: , 0, 1, 00, 01, 10, …

1b. If M accepts a string w, print w



Enumerator (6)

•In the Proof of (2), we see that if a string is
accepted by M, it will be printed by E
eventually (why?), though with infinitely many
times (why?)

•Note: Turing-recognizable language is also
called recursively enumerable language. The
latter term actually originates from
enumerator



Hilbert’s 10th Problem
•In 1900, David Hilbert delivered a famous talk

in the Internal Congress of Mathematicians
(ICM) in Paris

•He identified 23 math problems which he
thinks is important in the coming century

•The 10th Problem asks: Given a multi-variable
polynomial with integral coefficients (such as
P(x,y,z) = 6x3yz2 + 3xy2 –27). Is there an
algorithm that tells if there are any integral
root for P(x,y,z) = 0? [E.g., in this case, x=y=1,
z=2 is a possible integral root for P(x,y,z)=0]



Hilbert’s 10th Problem (2)

•However, what is meant by an algorithm?
•Roughly speaking, one meaning of algorithm is:

a set of steps for solving a problem, such that
when a human provided with unlimited supply of
pencils and papers, he can blindly follow these
steps and solve the problem

•There is no precise definition, until in 1936,
two separate papers, one from Alonzo Church
and one from Alan Turing, try to define it



Church-Turing Thesis
•Turing requires that for each step in the

algorithm, we can implement it by a TM
•Church uses another definition of algorithm

based on a notational system called -calculus
•Surprisingly, these two definitions are shown

to be equivalent!! (That is, a problem P can be
solved by some algorithm with Turing’s
definition if and only if P can be solved by
some algorithm with Church’s definition)
–Later (in 1970), Yuri Matijasevičproves that, under

their definition, no algorithm can test whether a
multi-variable polynomial has integral root



Church-Turing Thesis (2)

•Also, it seems that all problems that we can
think of solvable by an “algorithm”(with our
“intuitive”and “non-precise”definition) are
exactly the problems solvable by TM

•Therefore, Steven Kleene (1943) proposes this
thesis, or conjecture in his paper, which is now
known as the Church-Turing Thesis:
“If a problem is intuitively solvable, it can be
solved by TM”



Solving Problem by TM (example)

• Let A be the language
{ G| G = undirected connected graph}

where Gthe encoding of G
•That is, given an undirected graph G, we

want to determine if G is connected
•How to solve it by TM?



M = “On input G
Step 1. Select first node of G and mark it
Step 2. Repeat the following stage until no

new nodes are marked:
2a. For each node in G, mark it if it is

attached to a marked node
Step 3. Scan all nodes. If all are marked,

accept. Otherwise, reject.

Solving Problem by TM (example)



Next Time

•Decidable Language
–Can be decided by some algorithm

•Undecidable Language
–No algorithm can decide it


