
CS5371
Theory of Computation

Lecture 10: Computability Theory I
(Turing Machine)



Objectives

•Introduce the Turing Machine (TM)?
–Proposed by Alan Turing in 1936
–finite-state control + infinitely long tape
–A stronger computing device than the

DFA or PDA



What is a TM?

•Control is similar to (but not the same as) DFA
•It has an infinite tape as memory
•A tape head can read and write symbols and move

around the tape
•Initially, tape contains input string (on the

leftmost end) and is blank everywhere

control

baba

= blank symbols



What is a TM? (2)

•Finite number of states, with two special states:
accept, reject

•Based on the current state and the tape symbol
under the tape head, TM then decides the tape
symbol to write on the tape, goes to the next state,
and moves the tape head left or right

•When TM enters accept state, it accepts the input
immediately; when TM enters reject state, it
rejects the input immediately

•If it does not enter the accept or reject states, TM
will run forever, and never halt



TM versus DFA

•Similarities:
–Finite set of states

•Differences:
–TM has an infinite tape and

•TM can both read and write on the tape
•Tape head can move both left and right

–Input string of TM is stored in tape
–The special states in TM take effect

immediately



TM in Action

•Let us introduce a TM that
recognizes the language

B = { w#w | w is in {0,1}* }
•We want the TM to accept if the

input is in B, and to reject otherwise
•What should the TM do?



TM in Action (2)

•Use multiple passes
•Starts matching corresponding chars, one

on each side of #
•To keep track of which chars are checked

already, TM crosses off each char as it is
examined



Snapshots of Execution (1)

1 1 0 0   0#00110

1 1 0 0   0#0011X

1 1 0 0   0#0011X

1 1 0 0   0#0011X

 Tape head moves to right



Snapshots of Execution (2)

1 1 0 0   0#0011X

1 1 0 0   0#0011X

1 1 0 0   X#0011X

1 1 0 0   X#0011X

 Tape head moves to left



Snapshots of Execution (3)

1 1 0 0   X#0011X

1 1 0 0   X#0011X

1 1 0 0   X#001XX

1 1 0 0   X#001XX

 Tape head moves to right



Snapshots of Execution (4)

1 1 0 0   X#001XX

1 1 0 0   X#001XX

X 1 0 0   X#001XX

X 1 0 0   X#001XX

 Tape head moves to left



Snapshots of Execution (5)

X 1 0 0   X#001XX

X 1 0 0   X#001XX

X 1 0 0   X#00XXX

X 1 0 0   X#00XXX

 Tape head moves to right



Snapshots of Execution (6)

X X X 0   X#XXXXX

X X X X   X#XXXXX

X X X X   X#XXXXX



X X X X   X#XXXXX

Tape head moves to left



Snapshots of Execution (7)

X X X X   X#XXXXX

X X X X   X#XXXXX

X X X X   X#XXXXX



X X X X   X#XXXXX

accept

Tape head moves to right



TM (Formal Definition)

•A TM is a 7-tuple (Q, , , , q0, qAcc, qRej)
–Q = finite set of states
–= finite input alphabet, where blank symbol 
–= finite tape alphabet, where and 
–is the transition function of the form:

: Q x  Q x x { L, R },
where L, R indicates whether the tape head moves
left or right after the transition

–q0 is the start state
–qAcc = accept state, qRej = reject state



Computation of TM

•Let M = (Q, , , , q0, qAcc, qRej) be a TM
•First, M receives input w = w1w2…wn *

on the leftmost n squares of the tape
–Rest of tape is blank (i.e., filled with ’s)
–Note: as , first blank on the tape marks

the end of input
•Once M has started, the computation

proceeds according to the transition
function



Computation of TM (2)

•(important) If M tries to move its head to
the left of the leftmost end of tape, the
head simply stays for that move

•The computation continues until M enters
accept state or reject state. Otherwise,
M goes on forever



Configuration of TM
•The configuration of a TM specifies the current

state, and the current string in the tape, and
the current location of the tape head

•When the configuration of a TM is:
current state = q, current string w = uv with
tape head over the first symbol of v, we write:

u q v
as a shorthand notation

•E.g., 1100 q7 01111 represents the configuration
of TM when tape is 11000111, current state is q7,
and the tape head is over the 3rd 0 in the tape



Configuration of TM (2)

•We say a configuration C yields another
configuration C’if the machine can go
from C to C’in a single transition step

•E.g., if (q, b) = (q’, c, R)
ua q bv yields uac q’v

–special case when off the left end: E.g.,
q bv yields q’cv if (q, b) = (q’, c, L)

•How to represent the start configuration?



Configuration of TM (3)

•More special cases:
–In an accepting configuration, the current

state is the accept state qAcc

–In a rejecting configuration, the current
state is the accept state qRej

–These two kinds of configuration are called
halting configurations and will not yield
further configurations



Acceptance of TM
(Formal Definition)

•Turing Machine M= (Q, , , , q0, qAcc, qRej)
accepts input w if a sequence of
configurations C1, C2, …, Ck exists with
–C1 = q0 w

–For i = 1 to k-1, Ci yields Ci+1

–Ck is an accepting configuration

i.e., this indicates C1 is the start configuration

i.e., M moves according to transition function

i.e., M enters accept state in the end



Example of TM

•Let us try to describe formally a TM that
recognizes { w#w | w in {0,1}* }

•Also, let us use the shorthand
a b, L to denote current tape

symbol is changed from a to b after
transition, and tape head moves to L
and

a  L to mean a  a, L



start

# R

1  X, R

X  R

 R

0,1  R
0,1  R

# R

# R

X  R

1  X, L

0,1,X  L

0,1 L

0X, L

X  R

X  R

# L

0  X, R

= accept state

Reject state not shown
for simplicity



Example of TM (2)

•Giving full details of TM are sometimes time-
consuming

•Usually, people give only high-level details
instead (but they must be precise enough for
understanding)

•Let us try to describe the high-level details
of a TM M2 that recognizes the language

{ aibjck | i x j = k and i,j,k 1}



High-Level Details of M2

•On any input string w
–Scan the input from left to right to check if the

string is in the form a+b+c+ (rejects if not) (how?)
–Return the head to left end of tape (how?)
–Cross off an ‘a’. Scan right to find the first ‘b’.

Zig-zag the input string, so that we match each ‘b’
with each ‘c’by crossing off a ‘b’and a ‘c’each
time. If not enough ‘c’, rejects

–Restore all crossed ‘b’. Repeat the above step if
there are ‘a’remaining (how?)

–If all ‘a’are gone, check if all ‘c’are crossed. If
yes, accepts. If no, rejects



Recursively Enumerable Language

•The set of strings that M accepts is
called the language of M, or the language
recognized by M, and is denoted by L(M)

•We call a language Turing-recognizable (or,
recursively enumerable) if there is some
Turing machine that recognizes it



Recursive Language

•On a given input to a TM, there are three
possible outcomes: TM accepts, TM rejects,
or TM loops forever

•A TM machine that halts (i.e., never loops) on
all inputs is called a decider

•We say a TM M decides a language L if M
accepts all strings in L and M rejects all
strings not in L (so, M is a decider)

•A language is Turing-decidable (or, recursive)
if there is some TM that decides it



Quick Quiz

Is the following true?

1. If L is Turing-decidable, L is Turing-
recognizable

2. If L is Turing-recognizable, L is Turing-
decidable

3. If L is Turing-decidable, so is L
4. If L is Turing-recognizable, so is L
5. If both L and L are Turing-recognizable, L is

Turing-decidable

_

_
_



Next Time

•Multi-tape Turing Machine
•Non-deterministic Turing Machine

(NTM)


