CS4311
 Design and Analysis of Algorithms

Tutorial: KMP Algorithm

About this tutorial

- Introduce String Matching problem
- Knuth-Morris-Pratt (KMP) algorithm

String Matching

- Let $T[0 . . n-1]$ be a text of length n
- Let P[0..p-1] be a pattern of length p
- Can we find all locations in T that P occurs?
- E.g., $T=$ bacbabababacbb

$$
P=a b a b a
$$

Here, P occurs at positions 4 and 6 in T

Brute Force Approach

- The easiest way to find the locations where P occurs in T is as follows:

For each position of T Check if P occurs at that position

- Running time: worst-case $O(n p)$

Brute Force Approach

- In the previous algorithm, after we check if P occurs at position x, we start over for the match of P at position $x+1$
- But we may learn some information during the checking of position x
\rightarrow may help to speed up later checking

Brute Force Approach

E.g., suppose when we check if P occurs at position x, we get the following scenario:

Can P occur in positions $x+1$ or $x+2$?

Brute Force Approach

How about this case?

Can P occur in positions $x+1, x+2$, or $x+3$?

Key Observation

Lemma:

Suppose P has matched k chars with $T[x \ldots]$ That is, $\quad P[0 . . k-1]==T[x . . x+k-1]$,

Then, for any $0<r<k$, if $T[x+r \ldots x+k-1]$ is not a prefix of P, P cannot occur at position $x+r$

How Many Positions to Skip?

- When $T[x .$.$] gets a first mismatch after$ matching k chars with P, so that we know

$$
P[0 . . k-1]==T[x . . x+k-1]
$$

we can restart the next checking at the leftmost position $x+r$ such that

$$
T[x+r . . x+k-1] \text { is a prefix of } P
$$

- Thus "skipping" r positions

Key Observation

E.g., in our first example,

$$
\begin{array}{|l|l|l|l|l|}
\hline \mathrm{P} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{c} \\
\hline
\end{array}
$$

next checking can restart at pos $x+3$

Key Observation

In our second example,

next checking can restart at pos $x+3$

Finding Desired r

- We observe that

$$
T[x+r . . x+k-1]==P[r . . k-1]
$$

- So to find the desired r, we need the smallest r such that (why smallest?)

$$
P[r . . k-1] \text { is a prefix of } P
$$

- What does that mean ??

Finding Desired r (Example 1)

When $k=3$, we ask:

Thus, we set $r=3$

Finding Desired r (Example 2)

When $k=5$ (what does that mean??), we ask:

Finding Desired r

- For each k, smallest r with $P[r . . k-1]==$ prefix of P implies $P[r . . k-1]$ is longest such prefix
- We now define a function π, called prefix function, such that

$$
\pi(k)=\text { length of such } P[r . . k-1]
$$

KMP Algorithm

- The KMP algorithm relies on the prefix function to locate all occurrences of P in $O(n)$ time \rightarrow optimal!
- Next, we assume that the prefix function is already computed
- We first describe a simplified version and then the actual KMP
- Finally, we show how to get prefix function

Simplified Version

Set $x=0$; while $(x<n-p+1)$ \{ 1. Match T with P at position x;
2. Let $k=\# m a t c h e d$ chars :
3. if ($k==p$) output "match at x " ;
4. Update $x=x+k-\pi(k)$;
\}
What is the worst-case running time?

How can we improve?

- In simplified version, inside the while loop, Line 1 restarts matching (every char of) T with P from position x
- In fact, we know that after "skipping", the first $\pi(k)$ chars are already matched
- What if we take advantage of this??

KMP Algorithm

Set $x=0 ; k=0$; while $(x<n-p+1)$ \{

1. Match T with P at position x but starting from $k+1^{\text {th }}$ position;
2. Update $k=\# m a t c h e d ~ c h a r s ; ~$
3. if $(k==p)$ output "match at x " :
4. Update $x=x+k-\pi(k)$;
5. Update $k=\pi(k)$;
\} k keeps track of \#matched chars

Running Time

- The running time comes from four parts:

1. Mis/matching a char of T with P (Line 1)
2. Updating the position x
(Line 4)
3. Output match
(Line 3)
4. Updating k
(Line 2, Line 5)
Since each char is matched once, and x increases for each mismatch
\rightarrow in total $O(n)$ time

Computing Prefix Function

- It remains to compute the prefix function
- In fact, it can be computed incrementally (finding $\pi(1)$, then $\pi(2)$, then $\pi(3)$, and so on)
- For instance, suppose we have obtained $\pi(1), \pi(2), \ldots, \pi(k)$ already
\rightarrow How can we compute $\pi(k+1)$?

Computing $\pi(k+1)$

We know that a prefix of length $\pi(k)$, $\mathrm{P}[0 . . \pi(\mathrm{k})-1]$, is the longest prefix matching the suffix of $P[0 . . k-1]$

Computing $\pi(k+1)$

What if the next corresponding chars, $P[\pi(k)]$ and $P[k]$
are the same??
P

If same, $\pi(k+1)=\pi(k)+1$ (prove by contradiction)

Computing $\pi(k+1)$

Else $\mathrm{P}[\pi(\mathrm{k})]$ and $\mathrm{P}[\mathrm{k}]$ are different
Then, we should move P below rightwards to search for the next longest prefix of P matching the suffix of $P[0 . . k-1]$
P

Computing $\pi(\mathrm{k}+1)$

What if the next corresponding chars, $P[\pi(\pi(k))]$ and $P[k]$ are the same??

P

If same, $\pi(k+1)=\pi(\pi(k))+1$ (prove by contradiction)

Computing $\pi(k+1)$

- Else $P[\pi(\pi(k))]$ and $P[k]$ are different, and we see that we can repeat the procedure and obtain $\pi(k+1)$ as soon as we find:
the longest prefix of P matching the suffix of $\mathrm{P}[0 . \mathrm{K}-1]$, with its next char $==\mathrm{P}[\mathrm{k}]$
- same procedure as string matching algo
- Total time to compute π : $O(p)$ time since (1) at most P matches, and
(2) P below moves rightwards for each mismatch

