CS4311
 Design and Analysis of Algorithms

Lecture 13: Greedy Algorithm

About this lecture

- Introduce Greedy Algorithm
- Look at some problems solvable by Greedy Algorithm

Coin Changing

- Suppose that in a certain country, the coin dominations consist of:

$$
\$ 1, \$ 2, \$ 5, \$ 10
$$

- You want to design an algorithm such that you can make change of any x dollars using the fewest number of coins

Coin Changing

- An idea is as follows:

1. Create an empty bag
2. while $(x>0)$ \{

Find the largest coin c at most x;
Put c in the bag;
Set $x=x-c$;
\}
3. Return coins in the bag

Coin Changing

- It is easy to check that the algorithm always return coins whose sum is x
- At each step, the algorithm makes a greedy choice (by including the largest coin) which looks best to come up with an optimal solution (a change with fewest \#coins)
- This is an example of Greedy Algorithm

Coin Changing

- Is Greedy Algorithm always working?
- No!
- Consider a new set of coin denominations:

$$
\$ 1, \$ 4, \$ 5, \$ 10
$$

- Suppose we want a change of $\$ 8$
- Greedy algorithm: 4 coins $(5,1,1,1)$
- Optimal solution: 2 coins $(4,4)$

Greedy Algorithm

- We will look at some non-trivial examples where greedy algorithm works correctly
- Usually, to show a greedy algorithm works:
- We show that some optimal solution includes the greedy choice
\rightarrow selecting greedy choice is correct
- We show optimal substructure property
\rightarrow solve the subproblem recursively

Activity Selection

- Suppose you are a freshman in a school, and there are many welcoming activities
- There are n activities $A_{1}, A_{2}, \ldots, A_{n}$
- For each activity A_{k}, it has
- a start time s_{k}, and
- a finish time f_{k}

Target: Join as many as possible!

Activity Selection

- To join the activity A_{k},
- you must join at s_{k};
- you must also stay until f_{k}
- Since we want as many activities as possible, should we choose the one with
(1) Shortest duration time?
(2) Earliest start time?
(3) Earliest finish time?

Activity Selection

- Shortest duration time may not be good:
$A_{1}:[4: 50,5: 10)$,
$A_{2}:[3: 00,5: 00), A_{3}:[5: 05,7: 00)$,
- Though not optimal, \#activities in this solution R (shortest duration first) is at least half \#activities in an optimal solution O:
- One activity in R clashes with at most 2 in O
- If $|O|>2|R|, R$ should have one more activity

Activity Selection

- Earliest start time may even be worse: A_{1} : [3:00, 10:00),
$A_{2}:[3: 10,3: 20), A_{3}:[3: 20,3: 30)$, $A_{4}:[3: 30,3: 40), A_{5}:[3: 40,3: 50) \ldots$
- In the worst-case, the solution contains 1 activity, while optimal has n-1 activities

Greedy Choice Property

To our surprise, earliest finish time works!
We actually have the following lemma:
Lemma: For the activity selection problem, some optimal solution includes an activity with earliest finish time

How to prove?

Proof: (By "Cut-and-Paste" argument)

- Let OPT = an optimal solution
- Let $A_{j}=$ activity with earliest finish time
- If OPT contains A_{j}, done!
- Else, let $A^{\prime}=$ earliest activity in OPT
- Since A_{j} finishes no later than A^{\prime}, we can replace A^{\prime} by A_{j} in OPT without conflicting other activities in OPT
\rightarrow an optimal solution containing A_{j}
(since it has same \#activities as OPT)

Optimal Substructure

Let $A_{j}=$ activity with earliest finish time
Let S = the subset of original activities that do not conflict with A_{j}
Let $O P T=$ optimal solution contain A_{j}
Lemma:
OPT - $\left\{A_{j}\right\}$ must be an optimal solution for the subproblem with input activities S

Proof: (By contradiction)

- First, OPT - $\left\{A_{j}\right\}$ can contain only activities in S
- If it is not an optimal solution for input activities in S, let C be some optimal solution for input S
$\rightarrow C$ has more activities than OPT $-\left\{A_{j}\right\}$
$\rightarrow C \cup\left\{A_{j}\right\}$ has more activities than OPT
\rightarrow Contradiction occurs

Greedy Algorithm

The previous two lemmas implies the following correct greedy algorithm:
$S=$ input set of activities : while (S is not empty) \{
$A=$ activity in S with earliest finish time:
Update S by removing activities having
conflicts with A;
\}
If finish times are sorted in input, running time $=O(n)$

0-1 Knapsack Problem

- Suppose you are a thief, and you are now in a jewelry shop (nobody is around !)
- You have a big knapsack that you have "borrowed" from some shop before
- Weight limit of knapsack: W
- There are n items, $I_{1}, I_{2}, \ldots, I_{n}$
- I_{k} has value v_{k}, weight w_{k}

Target: Get items with total value as large as possible without exceeding weight limit

0-1 Knapsack Problem

- We may think of some strategies like:
(1) Take the most valuable item first
(2) Take the densest item (with v_{k} / w_{k} is maximized) first
- Unfortunately, someone shows that this problem is very hard (NP-complete), so that it is unlikely to have a good strategy
- Let's change the problem a bit...

Fractional Knapsack Problem

- In the previous problem, for each item, we either take it all, or leave it there - Cannot take a fraction of an item
- Suppose we can allow taking fractions of the items; precisely, for a fraction c
- c part of I_{k} has value $c v_{k}$, weight $c w_{k}$

Target: Get as valuable a load as possible, without exceeding weight limit

Fractional Knapsack Problem

- Suddenly, the following strategy works:

Take as much of the densest item (with v_{k} / w_{k} is maximized) as possible

- The correctness of the above greedychoice property can be shown by cut-and-paste argument
- Also, it is easy to see that this problem has optimal substructure property
\rightarrow implies a correct greedy algorithm

Fractional Knapsack Problem

- However, the previous greedy algorithm (pick densest) does not work for 0-1 knapsack
- To see why, consider $W=50$ and:

$$
\begin{array}{ll}
I_{1}: v_{1}=\$ 60, w_{1}=10 & \text { (density: } 6) \\
I_{2}: v_{2}=\$ 100, w_{2}=20 & \text { (density: } 5) \\
I_{3}: v_{3}=\$ 120, w_{3}=30 & \text { (density: } 4)
\end{array}
$$

- Greedy algorithm: \$160 ($\left.I_{1}, I_{2}\right)$
- Optimal solution: $\$ 220\left(I_{2}, I_{3}\right)$

Encoding Characters

- In ASCII, each character is encoded using the same number of bits (8 bits)
- called fixed-length encoding
- However, in real-life English texts, not every character has the same frequency
- One way to encode the texts is:
- Encode frequent chars with few bits
- Encode infrequent chars with more bits
\rightarrow called variable-length encoding

Encoding Characters

- Variable-length encoding may gain a lot in storage requirement

Example:

- Suppose we have a 100K-char file consisted of only chars a, b, c, d, e, f
- Suppose we know a occurs 45 K times, and other chars each 11K times
\rightarrow Fixed-length encoding: 300K bits

Encoding Characters

Example (cont):
Suppose we encode the chars as follows:

$$
\begin{aligned}
& a \rightarrow 0, \quad b \rightarrow 100, \quad c \rightarrow 101, \\
& d \rightarrow 110, \quad e \rightarrow 1110, \quad f \rightarrow 1111
\end{aligned}
$$

- Storage with the above encoding:

$$
\begin{aligned}
& (45 \times 1+33 \times 3+22 \times 4) \times 1 K \\
= & 232 \mathrm{~K} \text { bits (reduced by } 25 \%!!)
\end{aligned}
$$

Encoding Characters

Thinking a step ahead, you may consider an even "better" encoding scheme:

$$
\begin{array}{lll}
a \rightarrow 0, & b \rightarrow 1, & c \rightarrow 00, \\
d \rightarrow 01, & e \rightarrow 10, & f \rightarrow 11
\end{array}
$$

- This encoding requires less storage since each char is encoded in fewer bits ...
- What's wrong with this encoding?

Prefix Code

Suppose the encoded texts is: 0101 We cannot tell if the original text is abab, dd, abd, aeb, or ...

- The problem comes from: one codeword is a prefix of another one

Prefix Code

- To avoid the problem, we generally want each codeword not a prefix of another
- called prefix code, or prefix-free code
- Let T = text encoded by prefix code
- We can easily decode T back to original:
- Scan T from the beginning
- Once we see a codeword, output the corresponding char
- Then, recursively decode remaining

Prefix Code Tree

- Naturally, a prefix code scheme corresponds to a prefix code tree
- Each char \rightarrow a leaf
- Root-to-leaf path \rightarrow codeword

$$
\text { - E.g., } \begin{aligned}
a & \rightarrow 0, \quad b \rightarrow 100, \\
c & \rightarrow 101, d \rightarrow 110, \\
e & \rightarrow 1110, \quad f \rightarrow 1111
\end{aligned}
$$

Optimal Prefix Code

Question: Given frequencies of each char, how to find the optimal prefix code scheme (or optimal prefix code tree)?

Precisely:

Input: $S=a$ set n chars, $c_{1}, c_{2}, \ldots, c_{n}$ with c_{k} occurs $f c_{k}$ times

Target: Find codeword w_{k} for each c_{k} such that $\sum_{k}\left|w_{k}\right| f_{c_{k}}$ is minimized

Huffman Code

In 1952, David Huffman (then an MIT PhD student) thinks of a greedy algorithm to obtain the optimal prefix code tree

Let c and c^{\prime} be chars with least frequencies. He observed that:

Lemma: There is some optimal prefix code tree with c and c^{\prime} sharing the same parent, and the two leaves are farthest from root

Proof: (By "Cut-and-Paste" argument)

- Let OPT = some optimal solution
- If c and c^{\prime} as required, done!
- Else, let a and b be two bottom-most leaves sharing same parent (such leaves must exist... why??)
- swap a with c, swap b with c'
- an optimal solution as required
(since it at most the same $\Sigma_{k}\left|w_{k}\right| f_{k}$ as OPT ... why??)

Graphically:

Optimal Substructure

Let OPT be an optimal prefix code tree with c and c^{\prime} as required
Let T be a tree formed by merging c, c^{\prime}, and their parent into one node
Consider $S^{\prime}=$ set formed by removing c and c^{\prime} from S, but adding X with $f_{X}=f_{c}+f_{c^{\prime}}$

Lemma:

T is an optimal prefix code tree for S^{\prime}

Graphically, the lemma says:

If this is optimal for S

then this is optimal for S^{\prime}

Here, $f_{X}=f_{c}+f_{c^{\prime}}$

Huffman Code

Questions:
Based on the previous lemmas, can you obtain Huffman's coding scheme?
(Try to think about yourself before looking at next page...)

What is the running time?
$O(n \log n)$ time, using heap (how??)

Huffman(S) \{ // build Huffman code tree

1. Find least frequent chars c and c^{\prime}
2. $S^{\prime}=$ remove c and c^{\prime} from S, but add char X with $f_{X}=f_{c}+f_{c^{\prime}}$
3. $T^{\prime}=\operatorname{Huffman}\left(S^{\prime}\right)$
4. Make leaf X of T^{\prime} an internal node by connecting two leaves c and c to it
5. Return resulting tree
