
1

CS4311
Design and Analysis of

Algorithms

Lecture 13: Greedy Algorithm

2

About this lecture
•Introduce Greedy Algorithm

•Look at some problems solvable by Greedy
Algorithm

3

Coin Changing

•Suppose that in a certain country, the
coin dominations consist of:

$1, $2, $5, $10

•You want to design an algorithm such that
you can make change of any x dollars using
the fewest number of coins

4

Coin Changing
•An idea is as follows:

1. Create an empty bag
2. while (x 0) {

Find the largest coin c at most x;
Put c in the bag;
Set x = x –c ;

}
3. Return coins in the bag

5

Coin Changing

•It is easy to check that the algorithm
always return coins whose sum is x

•At each step, the algorithm makes a
greedy choice (by including the largest coin)
which looks best to come up with an
optimal solution (a change with fewest #coins)

•This is an example of Greedy Algorithm

6

Coin Changing

•Is Greedy Algorithm always working?
•No!
•Consider a new set of coin denominations:

$1, $4, $5, $10

•Suppose we want a change of $8
•Greedy algorithm: 4 coins (5,1,1,1)
•Optimal solution: 2 coins (4,4)

7

Greedy Algorithm

•We will look at some non-trivial examples
where greedy algorithm works correctly

•Usually, to show a greedy algorithm works:
•We show that some optimal solution

includes the greedy choice
 selecting greedy choice is correct

•We show optimal substructure property
 solve the subproblem recursively

8

Activity Selection

•Suppose you are a freshman in a school,
and there are many welcoming activities

•There are n activities A1, A2, …, An

•For each activity Ak , it has
•a start time sk , and
•a finish time fk

Target: Join as many as possible!

9

Activity Selection
•To join the activity Ak,

•you must join at sk ;
•you must also stay until fk

•Since we want as many activities as
possible, should we choose the one with
(1) Shortest duration time?
(2) Earliest start time?
(3) Earliest finish time?

10

Activity Selection
•Shortest duration time may not be good:

A1 : [4:50, 5:10),
A2 : [3:00, 5:00), A3 : [5:05, 7:00),

•Though not optimal, #activities in this
solution R (shortest duration first) is at least
half #activities in an optimal solution O:
• One activity in R clashes with at most 2 in O
• If |O| 2|R|, R should have one more activity

11

Activity Selection
•Earliest start time may even be worse:

A1 : [3:00, 10:00),
A2 : [3:10, 3:20), A3 : [3:20, 3:30),
A4 : [3:30, 3:40), A5 : [3:40, 3:50) …

•In the worst-case, the solution contains 1
activity, while optimal has n-1 activities

12

Greedy Choice Property
To our surprise, earliest finish time works!
We actually have the following lemma:

Lemma: For the activity selection problem,
some optimal solution includes an activity
with earliest finish time

How to prove?

13

Proof: (By “Cut-and-Paste”argument)
•Let OPT = an optimal solution
•Let Aj = activity with earliest finish time
•If OPT contains Aj, done!
•Else, let A’= earliest activity in OPT

•Since Aj finishes no later than A’, we
can replace A’by Aj in OPT without
conflicting other activities in OPT

 an optimal solution containing Aj
(since it has same #activities as OPT)

14

Let Aj = activity with earliest finish time
Let S = the subset of original activities that

do not conflict with Aj

Let OPT = optimal solution contain Aj

Lemma:
OPT –{ Aj } must be an optimal solution
for the subproblem with input activities S

Optimal Substructure

15

Proof: (By contradiction)
•First, OPT –{ Aj } can contain only

activities in S
•If it is not an optimal solution for input

activities in S, let C be some optimal
solution for input S
 C has more activities than OPT –{ Aj }

 C [{Aj} has more activities than OPT

 Contradiction occurs

16

The previous two lemmas implies the
following correct greedy algorithm:

S = input set of activities ;
while (S is not empty) {

A = activity in S with earliest finish time;
Update S by removing activities having
conflicts with A;

}

Greedy Algorithm

If finish times are sorted in input,
running time = O(n)

17

Target: Get items with total value as large
as possible without exceeding weight limit

0-1 Knapsack Problem
•Suppose you are a thief, and you are now

in a jewelry shop (nobody is around !)
•You have a big knapsack that you have

“borrowed”from some shop before
•Weight limit of knapsack: W

•There are n items, I1, I2, …, In

• Ik has value vk, weight wk

18

0-1 Knapsack Problem
•We may think of some strategies like:

(1) Take the most valuable item first
(2) Take the densest item (with vk/wk is

maximized) first
•Unfortunately, someone shows that this

problem is very hard (NP-complete), so
that it is unlikely to have a good strategy

•Let’s change the problem a bit…

19

Target: Get as valuable a load as possible,
without exceeding weight limit

Fractional Knapsack Problem
•In the previous problem, for each item,

we either take it all, or leave it there
•Cannot take a fraction of an item

•Suppose we can allow taking fractions of
the items; precisely, for a fraction c
•c part of Ik has value cvk, weight cwk

20

Fractional Knapsack Problem
•Suddenly, the following strategy works:

Take as much of the densest item
(with vk/wk is maximized) as possible

•The correctness of the above greedy-
choice property can be shown by cut-
and-paste argument

•Also, it is easy to see that this problem
has optimal substructure property

 implies a correct greedy algorithm

21

Fractional Knapsack Problem
•However, the previous greedy algorithm

(pick densest) does not work for 0-1 knapsack
•To see why, consider W = 50 and:

I1 : v1 = $60, w1 = 10 (density: 6)

I2 : v2 = $100, w2 = 20 (density: 5)

I3 : v3 = $120, w3 = 30 (density: 4)

•Greedy algorithm: $160 (I1, I2)
•Optimal solution: $220 (I2, I3)

22

Encoding Characters
•In ASCII, each character is encoded using

the same number of bits (8 bits)
•called fixed-length encoding

•However, in real-life English texts, not
every character has the same frequency

•One way to encode the texts is:
•Encode frequent chars with few bits
•Encode infrequent chars with more bits
 called variable-length encoding

23

Encoding Characters
•Variable-length encoding may gain a lot in

storage requirement

Example:
•Suppose we have a 100K-char file

consisted of only chars a, b, c, d, e, f
•Suppose we know a occurs 45K times,

and other chars each 11K times
 Fixed-length encoding: 300K bits

24

Encoding Characters
Example (cont):

Suppose we encode the chars as follows:
a  0, b  100, c  101,
d  110, e  1110, f  1111

•Storage with the above encoding:
(45£1 + 33£3 + 22£4) £ 1K

= 232K bits (reduced by 25% !!)

25

Encoding Characters
Thinking a step ahead, you may consider an

even “better”encoding scheme:
a  0, b  1, c  00,
d  01, e  10, f 11

•This encoding requires less storage since
each char is encoded in fewer bits …

•What’s wrong with this encoding?

26

Prefix Code

Suppose the encoded texts is: 0101
We cannot tell if the original text is

abab, dd, abd, aeb, or …

•The problem comes from:
one codeword is a prefix of another one

27

Prefix Code
•To avoid the problem, we generally want

each codeword not a prefix of another
•called prefix code, or prefix-free code

•Let T = text encoded by prefix code
•We can easily decode T back to original:

•Scan T from the beginning
•Once we see a codeword, output the

corresponding char
•Then, recursively decode remaining

28

Prefix Code Tree
•Naturally, a prefix code

scheme corresponds to a
prefix code tree
•Each char  a leaf
•Root-to-leaf path 

codeword
•E.g., a  0, b  100,

c  101, d  110,
e  1110, f  1111

a

0 1

1

b

0

c

0 1

d

10

e f

29

Optimal Prefix Code
Question: Given frequencies of each char,

how to find the optimal prefix code
scheme (or optimal prefix code tree)?

Precisely:
Input: S = a set n chars, c1, c2, …, cn

with ck occurs fck times

Target: Find codeword wk for each ck

such that k |wk| fck is minimized

30

Huffman Code
In 1952, David Huffman (then an MIT PhD

student) thinks of a greedy algorithm to
obtain the optimal prefix code tree

Let c and c’be chars with least frequencies.
He observed that:

Lemma: There is some optimal prefix code
tree with c and c’sharing the same parent,
and the two leaves are farthest from root

31

Proof: (By “Cut-and-Paste”argument)
•Let OPT = some optimal solution
•If c and c’as required, done!
•Else, let a and b be two bottom-most

leaves sharing same parent (such leaves
must exist… why??)
•swap a with c, swap b with c’
•an optimal solution as required

(since it at most the same k |wk| fk as OPT …why??)

32

Graphically:

0 1

a b

c

If this is optimal

Bottom-most
leaves

0 1

c b

a

then this is optimal

33

Optimal Substructure
Let OPT be an optimal prefix code tree with

c and c’as required
Let T be a tree formed by merging c, c’, and

their parent into one node
Consider S’= set formed by removing c and c’

from S, but adding X with fX = fc + fc’

Lemma:
T is an optimal prefix code tree for S’

34

Graphically, the lemma says:

0 1

c c’

If this is optimal for S

Merging c, c’
and the parent

0 1

X
a

then this is optimal for S’

Merged
node

Here, fX = fc + fc’

35

Huffman Code
Questions:

Based on the previous lemmas, can you
obtain Huffman’s coding scheme?
(Try to think about yourself before
looking at next page…)

What is the running time?
O(n log n) time, using heap (how??)

36

Huffman(S) { // build Huffman code tree

1. Find least frequent chars c and c’
2. S’= remove c and c’from S,

but add char X with fX = fc + fc’

3. T’= Huffman(S’)
4. Make leaf X of T’an internal node by

connecting two leaves c and c’to it
5. Return resulting tree

}

