
1

CS4311
Design and Analysis of

Algorithms

Lecture 12: Dynamic Programming IV

2

Subsequence of a String

•Let S = s1s2…sm be a string of length m
•Any string of the form

si1
si2

…sik
with i1 i2 …ik is a subsequence of S

•E.g., if S = farmers
 fame, arm, mrs, farmers, are some of

the subsequences of S

3

Longest Common Subsequence

•Let S and T be two strings
•If a string is both

•a subsequence of S and
•a subsequence of T,

it is a common subsequence of S and T

•In addition, if it is the longest possible
one, it is a longest common subsequence

4

Longest Common Subsequence

•E.g.,
S = algorithms
T = logarithms

•Then, aim, lots, ohms, grit, are some of
the common subsequences of S and T

•Longest common subsequences:
lorithms , lgrithms

5

Longest Common Subsequence

•Let S = s1s2…sm be a string of length m
•Let T = t1t2…tn be a string of length n

Can we quickly find a longest common
subsequence (LCS) of S and T ?

6

Let X = x1x2…xk be an LCS of
S1,i = s1 s2…si and T1,j = t1t2…tj.

Lemma:
•If si = tj, then xk = si = tj, and x1x2…xk-1

must be the LCS of S1,i-1 and T1,j-1

•If si tj, then X must either be
(i) an LCS of S1,i and T1,j-1 , or
(ii) an LCS of S1,i-1 and T1,j

Optimal Substructure

7

Let leni,j = length of the LCS of S1,i and T1,j

Optimal Substructure

Lemma: For any i, j ¸ 1,
• if si = tj, leni,j = leni-1,j-1 + 1

• if si tj, leni,j = max { leni,j-1 , leni-1,j }

8

Define a function Compute_L(i,j) as follows:
Compute_L(i, j) /* Finding leni,j */

1. if (i == 0 or j == 0) return 0; /* base case */

2. if (si == tj)
return Compute_L(i-1,j-1) + 1;

3. else
return max {Compute_L(i-1,j), Compute_L(i,j-1)};

Length of LCS

Compute_L(m, n) runs in O(2m+n) time

9

Overlapping Subproblems
To speed up, we can see that :

To Compute_L(i,j) and Compute_L(i-1,j+1),
has a common subproblem:

Compute_L(i-1,j)

In fact, in our recursive algorithm, there are
many redundant computations !

Question: Can we avoid it ?

10

Bottom-Up Approach
•Let us create a 2D table L to store all

leni,j values once they are computed
BottomUp_L() /* Finding min #operations */

1. For all i and j, set L[i,0] = L[0, j] = 0;
2. for (i = 1,2,…, m)

Compute L[i,j] for all j;
// Based on L[i-1,j-1], L[i-1,j], L[i,j-1]

4. return L[m,n] ;

Running Time = (mn)

11

Remarks
•Again, a slight change in the algorithm

allows us to obtain a particular LCS

•Also, we can make minor changes to the
recursive algorithm and obtain a memoized
version (whose running time is O(mn))

12
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0
0
0
0

0000000000

Example Run: After Step 1

13
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0
0
0

1111111110
0000000000

Example Run: After Step 2, i = 1

14
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0
0

2222211110
1111111110
0000000000

Example Run: After Step 2, i = 2

15
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0

3322222110
2222211110
1111111110
0000000000

Example Run: After Step 2, i = 3

16
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0

3333222110
3322222110
2222211110
1111111110
0000000000

Example Run: After Step 2, i = 4

17
M
O
O
R
Y
T
R
I
D

YROTIMROD

4443332210
4443222210
4443222210
4433222110
4333222110
3333222110
3322222110
2222211110
1111111110
0000000000

Example Run: After Step 2

18
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0
0
0

1111111110
0000000000

Extra information to obtain an LCS

19
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0
0

2222211110
1111111110
0000000000

Extra Info: After Step 2, i = 2

20
M
O
O
R
Y
T
R
I
D

YROTIMROD

0
0
0
0
0
0

3322222110
2222211110
1111111110
0000000000

Extra Info: After Step 2, i = 3

21
M
O
O
R
Y
T
R
I
D

YROTIMROD

4443332210
4443222210
4443222210
4433222110
4333222110
3333222110
3322222110
2222211110
1111111110
0000000000

Extra Info: After Step 2

22
M
O
O
R
Y
T
R
I
D

YROTIMROD

4443332210
4443222210
4443222210
4433222110
4333222110
3333222110
3322222110
2222211110
1111111110
0000000000

LCS obtained by tracing from L[m,n]

