CS4311
 Design and Analysis of Algorithms

Lecture 12: Dynamic Programming IV

Subsequence of a String

- Let $S=s_{1} s_{2} \ldots s_{m}$ be a string of length m
- Any string of the form

$$
s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}
$$

with $i_{1}<i_{2}<\ldots<i_{k}$ is a subsequence of S

- E.g., if $S=$ farmers
\rightarrow fame, arm, mrs, farmers, are some of the subsequences of S

Longest Common Subsequence

- Let S and T be two strings
- If a string is both
- a subsequence of S and
- a subsequence of T,
it is a common subsequence of S and T
- In addition, if it is the longest possible one, it is a longest common subsequence

Longest Common Subsequence

- E.g.,

$$
\begin{aligned}
& S=\text { algorithms } \\
& T=\text { logarithms }
\end{aligned}
$$

- Then, aim, lots, ohms, grit, are some of the common subsequences of S and T
- Longest common subsequences: lorithms, Igrithms

Longest Common Subsequence

- Let $S=s_{1} s_{2} \ldots s_{m}$ be a string of length m
- Let $T=t_{1} t_{2} \ldots t_{n}$ be a string of length n

Can we quickly find a longest common subsequence (LCS) of S and T ?

Optimal Substructure

Let $X=x_{1} x_{2} \ldots x_{k}$ be an LCS of

$$
S_{1, i}=s_{1} s_{2} \ldots s_{i} \text { and } T_{1, j}=\dagger_{1} \dagger_{2} \ldots \dagger_{j}
$$

Lemma:

- If $s_{i}=\dagger_{j}$, then $x_{k}=s_{i}=\dagger_{j}$, and $x_{1} x_{2} \ldots x_{k-1}$ must be the LCS of $S_{1, i-1}$ and $T_{1, j-1}$
- If $s_{i} \neq \dagger_{j}$, then X must either be
(i) an LCS of $S_{1, i}$ and $T_{1, j-1}$, or
(ii) an LCS of $S_{1, i-1}$ and $T_{1, j}$

Optimal Substructure

Let len ${ }_{i, j}=$ length of the LCS of $S_{1, i}$ and $T_{1, j}$
Lemma: For any $i, j \geq 1$,

- if $s_{i}=t_{j}$, len $n_{i, j}=\operatorname{len}_{i-1, j-1}+1$
- if $s_{i} \neq \dagger_{j}$, len $_{i, j}=\max \left\{\operatorname{len}_{i, j-1}, \operatorname{len}_{i-1, j}\right\}$

Length of LCS

Define a function Compute_L(i,j) as follows:
Compute_L(i,j) /* Finding len $\mathrm{l}_{\mathrm{i}} \mathrm{j}$ */

1. if $(i==0$ or $j==0)$ return 0 ; /* base case */
2. if $\left(s_{i}==\dagger_{j}\right)$
return Compute_L(i-1,j-1) + 1;
3. else
return max \{Compute_L(i-1,j), Compute_L(i,j-1)\};
Compute_L(m, n) runs in $O\left(2^{m+n}\right)$ time

Overlapping Subproblems

To speed up, we can see that:
To Compute_L(i,j) and Compute_L(i-1,j+1), has a common subproblem:

Compute_L(i-1,j)
In fact, in our recursive algorithm, there are many redundant computations!
Question: Can we avoid it?

Bottom-Up Approach

- Let us create a 2D table L to store all len $_{i, j}$ values once they are computed
BottomUp_L() /* Finding min \#operations */ 1. For all i and j, set $L[i, 0]=L[0, j]=0$; 2. for ($i=1,2, \ldots, m$)

Compute $L[i, j]$ for all j :
// Based on L[i-1,j-1], L[i-1,j], L[i,j-1]
4. return $L[m, n]$;

Running Time $=\Theta(m n)$

Remarks

- Again, a slight change in the algorithm allows us to obtain a particular LCS
- Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is $O(m n)$)

Example Run: After Step 1

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0									
I	0									
R	0									
T	0									
Y	0									
R	0									
0	0									
O	0									
M	0									

Example Run: After Step 2, $i=1$

		D	O	R	M	I	T	0	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0									
R	0									
T	0									
\mathbf{Y}	0									
R	0									
0	0									
0	0									
M	0									

Example Run: After Step 2, i=2

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0									
T	0									
Y	0									
R	0									
O	0									
O	0									
M	0									

Example Run: After Step 2, i=3

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
T	0									
Y	0									
R	0									
O	0									
O	0									
M	0									

Example Run: After Step 2, i=4

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
T	0	1	1	2	2	2	3	3	3	3
Y	0									
R	0									
O	0									
O	0									
M	0									

Example Run: After Step 2

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
T	0	1	1	2	2	2	3	3	3	3
Y	0	1	1	2	2	2	3	3	3	4
R	0	1	1	2	2	2	3	3	4	4
O	0	1	2	2	2	2	3	4	4	4
O	0	1	2	2	2	2	3	4	4	4
M	0	1	2	2	3	3	3	4	4	4

Extra information to obtain an LCS

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1κ	$1 \leftarrow$							
I	0									
R	0									
T	0									
Y	0									
R	0									
O	0									
O	0									
M	0									

Extra Info: After Step 2, $\mathrm{i}=2$

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1κ	$1 \leftarrow$							
I	0	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$
R	0									
T	0									
Y	0									
R	0									
O	0									
O	0									
M	0									

Extra Info: After Step 2, $i=3$

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	1κ	$1 \leftarrow$							
I	0	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$
R	0	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$
T	0									
Y	0									
R	0									
O	0									
O	0									
M	0									

Extra Info: After Step 2

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	$1 \uparrow$	$1 \leftarrow$							
I	0	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$
R	0	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$
T	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$	$3 \leftarrow$	$3 \leftarrow$
Y	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$3 \leftarrow$	$3 \leftarrow$	4κ
R	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$3 \uparrow$	4κ	$4 \uparrow$
O	0	$1 \uparrow$	2κ	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	4κ	$4 \uparrow$	$4 \uparrow$
O	0	$1 \uparrow$	2κ	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$4 \uparrow$	$4 \uparrow$	$4 \leftarrow$
\mathbf{M}	0	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$	$3 \leftarrow$	$4 \uparrow$	$4 \uparrow$	$4 \uparrow$

LCS obtained by tracing from $L[m, n]$

		D	O	R	M	I	T	O	R	Y
	0	0	0	0	0	0	0	0	0	0
D	0	$1 \uparrow$	$1 \leftarrow$							
I	0	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$	$2 \leftarrow$
R	0	$1 \uparrow$	$1 \uparrow$	2κ	$2 \leftarrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$
T	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$	$3 \leftarrow$	$3 \leftarrow$
Y	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$3 \leftarrow$	$3 \leftarrow$	4κ
R	0	$1 \uparrow$	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$3 \uparrow$	4κ	$4 \uparrow$
O	0	$1 \uparrow$	2κ	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	4κ	$4 \uparrow$	$4 \uparrow$
O	0	$1 \uparrow$	2κ	$2 \uparrow$	$2 \uparrow$	$2 \uparrow$	$3 \uparrow$	$4 \uparrow$	$4 \uparrow$	$4 \leftarrow$
M	0	$1 \uparrow$	$2 \uparrow$	$2 \uparrow$	3κ	$3 \leftarrow$	$3 \leftarrow$	$4 \uparrow$	$4 \uparrow$	$4 \uparrow$

