CS4311 Design and Analysis of Algorithms

Lecture 12: Dynamic Programming IV

Subsequence of a String

- Let $S = s_1 s_2 \dots s_m$ be a string of length m
- Any string of the form

 $s_{i_1} s_{i_2} \dots s_{i_k}$ with $i_1 < i_2 < \dots < i_k$ is a subsequence of S

- E.g., if S = farmers
 - fame, arm, mrs, farmers, are some of the subsequences of S

Longest Common Subsequence

- Let S and T be two strings
- If a string is both
 - a subsequence of S and
 - a subsequence of T,
 - it is a common subsequence of S and T
- In addition, if it is the longest possible one, it is a longest common subsequence

Longest Common Subsequence

- E.g.,
- S = algorithms
- T = logarithms
- Then, aim, lots, ohms, grit, are some of the common subsequences of S and T
- Longest common subsequences: lorithms, lgrithms

Longest Common Subsequence

- Let $S = s_1 s_2 \dots s_m$ be a string of length m
- Let $T = t_1 t_2 \dots t_n$ be a string of length n

Can we quickly find a longest common subsequence (LCS) of S and T?

Optimal Substructure Let $X = x_1 x_2 \dots x_k$ be an LCS of $S_{1,i} = s_1 s_2 \dots s_i$ and $T_{1,j} = t_1 t_2 \dots t_j$.

Lemma:

- If $s_i = t_j$, then $x_k = s_i = t_j$, and $x_1x_2...x_{k-1}$ must be the LCS of $S_{1,i-1}$ and $T_{1,j-1}$
- If $s_i \neq t_j$, then X must either be (i) an LCS of $S_{1,i}$ and $T_{1,j-1}$, or (ii) an LCS of $S_{1,i-1}$ and $T_{1,j}$

Optimal Substructure Let $len_{i,j} = length$ of the LCS of $S_{1,i}$ and $T_{1,j}$

Lemma: For any $i, j \ge 1$,

• if
$$s_i = t_j$$
, $len_{i,j} = len_{i-1,j-1} + 1$

• if
$$s_i \neq t_j$$
, $len_{i,j} = max \{ len_{i,j-1}, len_{i-1,j} \}$

Length of LCS

- Define a function Compute_L(i,j) as follows:
- Compute_L(i, j) /* Finding len_{i,j} */
 - 1. if (i == 0 or j == 0) return 0; /* base case */
 - 2. if $(s_i = t_j)$

return Compute_L(i-1,j-1) + 1;

3. else

return max {Compute_L(i-1,j), Compute_L(i,j-1)};

Compute_L(m, n) runs in $O(2^{m+n})$ time

Overlapping Subproblems

To speed up, we can see that :

To Compute_L(i,j) and Compute_L(i-1,j+1), has a common subproblem: Compute_L(i-1,j)

In fact, in our recursive algorithm, there are many redundant computations ! Question: Can we avoid it ?

Bottom-Up Approach

- Let us create a 2D table L to store all len_i, values once they are computed BottomUp_L() /* Finding min #operations */ 1. For all i and j, set L[i,0] = L[0, j] = 0; 2. for (i = 1, 2, ..., m)Compute L[i,j] for all j; // Based on L[i-1,j-1], L[i-1,j], L[i,j-1]
 - 4. return L[m,n];

Running Time = $\Theta(mn)$

Remarks

- Again, a slight change in the algorithm allows us to obtain a particular LCS
- Also, we can make minor changes to the recursive algorithm and obtain a memoized version (whose running time is O(mn))

Example Run: After Step 1

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0									
Ι	0									
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
Ι	0									
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

		D	0	R	M	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
I	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
Т	0	1	1	2	2	2	3	3	3	3
У	0									
R	0									
0	0									
0	0									
Μ	0									

Example Run: After Step 2

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1	1	1	1	1	1	1	1
Ι	0	1	1	1	1	2	2	2	2	2
R	0	1	1	2	2	2	2	2	3	3
Т	0	1	1	2	2	2	3	3	3	3
У	0	1	1	2	2	2	3	3	3	4
R	0	1	1	2	2	2	3	3	4	4
0	0	1	2	2	2	2	3	4	4	4
0	0	1	2	2	2	2	3	4	4	4
Μ	0	1	2	2	3	3	3	4	4	4

Extra information to obtain an LCS

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
I	0									
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

Extra Info: After Step 2, i = 2

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
I	0	1个	1个	1个	1个	21	2←	2←	2←	2←
R	0									
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

Extra Info: After Step 2, i = 3

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
I	0	1个	1个	1个	1个	21	2←	2←	2←	2←
R	0	1个	1个	21	2←	2↑	2↑	2↑	31	3←
Т	0									
У	0									
R	0									
0	0									
0	0									
Μ	0									

Extra Info: After Step 2

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
I	0	1个	1个	1个	1个	21	2←	2←	2←	2←
R	0	1个	1个	21	2←	2↑	2↑	2↑	31	3←
Т	0	1个	1个	2↑	2↑	2↑	31	3←	3←	3←
У	0	1个	1个	2↑	2↑	2↑	3↑	3←	3←	4⊼
R	0	1个	1个	2↑	2↑	2↑	3↑	3↑	4⊼	4↑
0	0	1个	21	2个	2↑	2↑	3↑	4⊼	4个	4↑
0	0	1个	21	2个	2↑	2↑	3↑	4个	4个	4←
Μ	0	1个	2↑	2↑	3⊾	3←	3←	4个	4个	4↑

LCS obtained by tracing from L[m,n]

		D	0	R	Μ	Ι	Т	0	R	У
	0	0	0	0	0	0	0	0	0	0
D	0	1	1←	1←	1←	1←	1←	1←	1←	1←
Ι	0	1个	1个	1个	1个	21	2←	2←	2←	2←
R	0	1个	1个	21	2←	2个	2↑	2↑	31	3←
Т	0	1个	1个	2↑	2↑	2↑	3⊾	3←	3←	3←
У	0	1个	1个	2↑	2↑	2↑	3↑	3←	3←	4⊼
R	0	1个	1个	2个	2↑	2↑	3↑	3↑	4⊾	4↑
0	0	1个	21	2↑	2↑	2↑	3↑	4⊼	4个	4个
0	0	1个	21	2个	2个	2个	3↑	4个	4个	4←
Μ	0	1个	2↑	2↑	3	3←	3←	4个	4个	4↑