
1

CS2351
Data Structures

Lecture 20:
Suffix Tree and Suffix Array

2

About this lecture

•So far, we have described data
structure for searching numbers

•We now introduce two data structures
for searching strings
•Suffix Tree and Suffix Array

3

Text Indexing
String Matching problem:

Given a text T and a pattern P, how to
locate all occurrences of P in T ?
•KMP algorithm can solve this in

O(|T|+|P|) time optimal
•In some applications, T is very long, and

given in advance, and we will search
different patterns against it later
•E.g., T= Human DNA, P = gene

4

Text Indexing
Text Indexing problem:

Suppose a text T is known.
Can we build a data structure for T, such
that for any pattern P given later, we can
find all occurrences of P in T quickly ?

•The data structure is called an index of T
•Target: search better than O(|T|+|P|) ??

5

Text Indexing
•Two main kinds of text indexes:

Word-Based: (for texts formed by words)

•Used by most text search engine
•E.g., Inverted Files

Full-Text: (for texts with no word boundaries)

•Used in indexing DNA
•E.g., Suffix Tree, Suffix Array

6

Suffix Tree
•Let T[1..n] be a text with n characters

•we assume T[n] is a unique character

•For any j, T[j..n] is called a suffix of T
 T has exactly n suffixes

•Weiner (1973) and McCreight (1976)
independently invented the suffix tree
•a tree formed by putting all suffixes of

T together

7

c

c

a a#

#
c a

a

#
c a

#
ca

#

c
a
a
c

#

caac

Suffix Tree of acacaac#

8

5

3

6
4

2

7

1

8

Definition of a Suffix Tree

•Suffix tree is an edge-labeled compact
tree (no degree-1 nodes) with n leaves
•each leaf suffix
• leaf label starting pos of suffix
•If we traverse from root to leaf k :

edge labels along path suffix T[k..n]
•edge-label to each child starts with

different character

9

Searching in a Suffix Tree

Theorem: If a pattern P occurs at position j
in T, P is a prefix of T[j..n]

This suggests the searching algorithm below:

•Start from root of the suffix tree
•Traverse the suffix tree using P

 What we are doing is to match P with all
suffixes of T at the same time

10

Searching in a Suffix Tree
Theorem: Pattern P occurs in T if and only

if all chars of P are matched in the
traversal of the searching algorithm

Questions:
1. How to locate the occurrences?
2. What is the searching time?

O(|P|+r) time, where r = #occurrences

11

Space Usage
•There are O(n) nodes and O(n) edges in

the suffix tree
 O(n) space ?

•Each edge needs to store its label, which
can contain O(n) chars
 In the worst-case, total O(n2) chars

•Can we reduce space usage?

12

Space Usage
Observation: Each edge label must be

equal to some substring of T
Clever Idea:

1. Store T, and
2. Replace each edge label by 2 integers,

telling which substring it is equal to

 Total space: O(n)

13

[8,8] [2,2]

[3,3]

Suffix Tree of acacaac#

8

5

3

6
4

2

7

1

[8,8]

[8,8]
[6,8] [4,8]

[1,1]

[2,2]

[3,3]

[6,8] [4,8]

[6,8]

14

Suffix Array
•Although suffix tree takes O(n) space,

the hidden constant is quite large
 around 40n to 60n bytes

•Manber and Myers (1990) simplified the
suffix tree, and invented the suffix array
•An array storing the suffixes of T in

the “dictionary”order

15

Suffix Array

•The suffix array SA for T
has n entries

•For any j, SA[j] stores the
jth smallest suffix, based
on alphabetical order

•Theorem: If P occurs in T,
its occurrences correspond
to consecutive region in SAcacaac#

caac#
c#
acacaac#
acaac#
ac#
aac#
#

Suffix Array
of acacaac#

1
2
3
4
5
6
7
8

16

Suffix Array

 Searching P takes
O(|P| log n) time

using binary search

Space:
We can represent each
suffix by its starting
position O(n) space

In practice, around 14n bytescacaac#
caac#
c#
acacaac#
acaac#
ac#
aac#
#

Suffix Array
of acacaac#

1
2
3
4
5
6
7
8

