CS2351 Data Structures

Lecture 20:
 Suffix Tree and Suffix Array

About this lecture

- So far, we have described data structure for searching numbers
- We now introduce two data structures for searching strings
- Suffix Tree and Suffix Array

Text Indexing

String Matching problem:
Given a text T and a pattern P, how to locate all occurrences of P in T ?

- KMP algorithm can solve this in $\mathrm{O}(|\mathrm{T}|+|\mathrm{P}|)$ time \rightarrow optimal
- In some applications, T is very long, and given in advance, and we will search different patterns against it later
- E.g., $T=$ Human DNA, $P=$ gene

Text Indexing

Text Indexing problem:
Suppose a text T is known.
Can we build a data structure for T, such that for any pattern P given later, we can find all occurrences of P in T quickly ?

- The data structure is called an index of T
- Target: search better than $O(|T|+|\mathrm{P}|)$??

Text Indexing

- Two main kinds of text indexes:

Word-Based: (for texts formed by words)

- Used by most text search engine
- E.g., Inverted Files

Full-Text: (for texts with no word boundaries)

- Used in indexing DNA
- E.g., Suffix Tree, Suffix Array

Suffix Tree

- Let T[1..n] be a text with n characters
- we assume $T[n]$ is a unique character
- For any $j, T[j . . n]$ is called a suffix of T
\rightarrow Thas exactly n suffixes
- Weiner (1973) and McCreight (1976) independently invented the suffix tree
- a tree formed by putting all suffixes of Ttogether

Suffix Tree of acacaac\#

Definition of a Suffix Tree

- Suffix tree is an edge-labeled compact tree (no degree-1 nodes) with n leaves
- each leaf \Leftrightarrow suffix
- leaf label \Leftrightarrow starting pos of suffix
- If we traverse from root to leaf k : edge labels along path \Leftrightarrow suffix $T[k . . n]$
- edge-label to each child starts with different character

Searching in a Suffix Tree

Theorem: If a pattern P occurs at position j in T, P is a prefix of $T[j . n]$

This suggests the searching algorithm below:

- Start from root of the suffix tree
- Traverse the suffix tree using P
\Rightarrow What we are doing is to match P with all suffixes of T at the same time

Searching in a Suffix Tree

Theorem: Pattern P occurs in T if and only if all chars of P are matched in the traversal of the searching algorithm

Questions:

1. How to locate the occurrences?
2. What is the searching time?
$O(|\mathrm{P}|+r)$ time, where $r=\#$ occurrences

Space Usage

- There are $O(n)$ nodes and $O(n)$ edges in the suffix tree
$\rightarrow O(n)$ space?
- Each edge needs to store its label, which can contain $O(n)$ chars
\rightarrow In the worst-case, total $O\left(n^{2}\right)$ chars
- Can we reduce space usage?

Space Usage

Observation: Each edge label must be equal to some substring of T
Clever Idea:

1. Store T, and
2. Replace each edge label by 2 integers, telling which substring it is equal to
\rightarrow Total space: $O(n)$

Suffix Tree of acacaac\#

Suffix Array

- Although suffix tree takes $O(n)$ space, the hidden constant is quite large
\Rightarrow around 40 n to 60 n bytes
- Manber and Myers (1990) simplified the suffix tree, and invented the suffix array
- An array storing the suffixes of T in the "dictionary" order

Suffix Array

Suffix Array - The suffix array SA for T of acacaac\#

1	\#
2	aac\#
3	ac\#
4	acaac\#
5	acacaac\#
6	c\#
7	caac\#
8	cacaac\#

- For any $j, S A[j]$ stores the $j^{\text {th }}$ smallest suffix, based on alphabetical order
- Theorem: If P occurs in T, its occurrences correspond to consecutive region in SA

Suffix Array

Suffix Array \rightarrow Searching P takes
$O(|P| \log n)$ time
using binary search
Space:
We can represent each suffix by its starting position $\rightarrow O(n)$ space

In practice, around $14 n$ bytes

