
1

CS2351
Data Structures

Lecture 9:
Basic Data Structures II

2

About this lecture
•A graph consists of a set of nodes and a

set of edges joining the nodes
•A tree is a special kind of graph, where

there is one connected component, and
that it contains no cycles

•In this lecture, we introduce how to store
a tree, and how to store a graph

3

Tree

4

Classification of Trees

rooted unrooted

root

Each edge connects
a parent to a child

No parent-child
relationship in an edge

5

Classification of Rooted Trees

ordered unordered

Has ordering
among children

No ordering
among children

=
?

6

Classification of Rooted Trees

binary non-binary

Each node has at
most 2 children

No restrictions

7

•Each node contains pointers that point to
the left child and the right child :

Implementing an Ordered
Rooted Binary Tree

struct node {
...
struct node *left, *right ;

} ;

8

•Also, each node may contain some info
•Ex: In a search tree for a set of integers,

each node contains an integer key

Implementing an Ordered
Rooted Binary Tree

struct node {
int key ;
struct node *left, *right ;

} ;

9

•Once the definition of a node is done, we
can create a tree

Implementing an Ordered
Rooted Binary Tree

struct node root, x, y ;
root.left = &x ;
root.right = &y ;
x.left = x.right = y.left = y.right = NULL;

root

x y

10

•It is easy to modify the definition of a
node to implement a rooted non-binary
tree (how?)

•Sometimes, we may also want to store a
pointer from a node to its parent, so as to
speed up movement in a tree

Remarks

struct node {
int key ;
struct node *left, *right, *parent;

} ;

11

Graph

12

Graph

1

2 3

4

5 1

2 3

4

5

undirected directed

13

Adjacency List (1)
•For each vertex u, store its neighbors in

a linked list

1

2 3

4

5

1 2 5

2 1 3

3 2 5

4 3 5

5 1 3

vertex neighbors

4

4

14

Adjacency List (2)
•For each vertex u, store its neighbors in

a linked list
1 5

2 1 3

3 2

4 4

5 3 4

vertex neighbors

1

2 3

4

5

15

Adjacency List (3)
•Let G = (V, E) be an input graph
•Using Adjacency List representation :

•Space : O(|V| + |E|)
 Excellent when |E| is small

•Easy to list all neighbors of a vertex
•Takes O(|V|) time to check if a vertex

u is a neighbor of a vertex v
•can also represent weighted graph

16

Adjacency Matrix (1)
•Use a |V| |V| matrix A such that

A(u,v) = 1 if (u,v) is an edge
A(u,v) = 0 otherwise

1

2 3

4

5

10010

01101
10100
11010
00101

1

5

4

3

2

54321

17

Adjacency Matrix (2)

1

2 3

4

5

10000

01100
01000
00010
00101

1

5

4

3

2

54321

•Use a |V| |V| matrix A such that
A(u,v) = 1 if (u,v) is an edge
A(u,v) = 0 otherwise

18

Adjacency Matrix (3)
•Let G = (V, E) be an input graph
•Using Adjacency Matrix representation :

•Space : O(|V|2)
 Bad when |E| is small

•O(1) time to check if a vertex u is a
neighbor of a vertex v

•(|V|) time to list all neighbors
•can also represent weighted graph

