CS23561
Data Structures

Lecture 9:
Basic Data Structures IT



About this lecture

* A graph consists of a set of nodes and a
set of edges joining the nodes

A tree is a special kind of graph, where
there is one connected component, and
that it contains no cycles

- In this lecture, we introduce how to store

a tree, and how to store a graph



Tree



Classification of Trees

A) root

paal

rooted unrooted

Each edge connects No parent-child
a parent to a child relationship in an edge



Classification of Rooted Trees

o

ordered unordered

Has ordering No ordering
among children among children



Classification of Rooted Trees

binary non-binary

Each node has at No restrictions
most 2 children



Implementing an Ordered
Rooted Binary Tree

» Each node contains pointers that point to
the left child and the right child :

struct node {

struct node *left, *right ;

' o



Implementing an Ordered
Rooted Binary Tree

+ Also, each node may contain some info

 Ex: In a search tree for a set of integers,
each node contains an integer key

struct node {
| nt key ;
struct node *left, *right ;

' o



Implementing an Ordered
Rooted Binary Tree

* Once the definition of a node is done, we
can create a free

struct node root, X, Vy ;
root.left = & :
root.right = &y ;

X.left = x.right =vy.left = vy.right = NULL;

root

& o,



Remarks

+ It is easy to modify the definition of a
node to implement a rooted non-binary
tree (how?)

- Sometimes, we may also want to store a
pointer from a node to its parent, so as to
speed up movement in a tree

struct node {
| nt key ;
struct node *left, *right, *parent;

' o
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Graph
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Adjacency List (1)

For each vertex u, store its neighbors in

a linked list
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Adjacency List (2)

* For each vertex u, store its neighbors in
a linked list
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Adjacency List (3)

* Let 6= (V, E) be an input graph
» Using Adjacency List representation :

- Space: O( |V]| + |E|)
= Excellent when |E| is small
» Easy to list all neighbors of a vertex

- Takes O(|V]) time to check if a vertex
u is a neighbor of a vertex v

» can also represent weighted graph
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Adjacency Matrix (1)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise
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Adjacency Matrix (2)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise
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Adjacency Matrix (3)

* Let 6= (V, E) be an input graph
» Using Adjacency Matrix representation :
+ Space: O( |V]?)

= Bad when |E]| is small

+ O(1) time to check if avertex uisa
neighbor of a vertex v

- O(|V]) time to list all neighbors
» can also represent weighted graph

18



