CS2351 Data Structures

Lecture 9:
 Basic Data Structures II

About this lecture

- A graph consists of a set of nodes and a set of edges joining the nodes
- A tree is a special kind of graph, where there is one connected component, and that it contains no cycles
- In this lecture, we introduce how to store a tree, and how to store a graph

Tree

Classification of Trees

rooted
Each edge connects a parent to a child

unrooted
No parent-child relationship in an edge

Classification of Rooted Trees

Classification of Rooted Trees

binary
Each node has at most 2 children

non-binary
No restrictions

Implementing an Ordered Rooted Binary Tree

- Each node contains pointers that point to the left child and the right child :

```
struct node {
    struct node *left, *right ;
} ;
```


Implementing an Ordered Rooted Binary Tree

- Also, each node may contain some info
- Ex: In a search tree for a set of integers, each node contains an integer key

```
struct node {
    int key ;
    struct node *left, *right ;
} ;
```


Implementing an Ordered Rooted Binary Tree

- Once the definition of a node is done, we can create a tree
struct node root, \mathbf{x}, y;
root.left $=$ \& x;
root.right $=\& y$;
$x . l e f t=x . r i g h t=y . l e f t=y . r i g h t=N U L L ;$

Remarks

- It is easy to modify the definition of a node to implement a rooted non-binary tree (how?)
- Sometimes, we may also want to store a pointer from a node to its parent, so as to speed up movement in a tree

```
struct node {
    int key ;
    struct node *left, *right, *parent;
} ;
```


Graph

Graph

undirected

directed

Adjacency List (1)

- For each vertex u, store its neighbors in a linked list

Adjacency List (2)

- For each vertex u, store its neighbors in a linked list

Adjacency List (3)

- Let $G=(V, E)$ be an input graph
- Using Adjacency List representation:
- Space: $O(|V|+|E|)$
\rightarrow Excellent when $|E|$ is small
- Easy to list all neighbors of a vertex
- Takes $O(|\mathrm{~V}|)$ time to check if a vertex u is a neighbor of a vertex v
- can also represent weighted graph

Adjacency Matrix (1)

- Use a $|V| \times|V|$ matrix A such that

$$
\begin{array}{ll}
A(u, v)=1 & \text { if }(u, v) \text { is an edge } \\
A(u, v)=0 & \text { otherwise }
\end{array}
$$

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	0	0
3	0	1	0	1	1
4	0	0	1	0	1
5	1	0	1	1	0

Adjacency Matrix (2)

- Use a $|V| \times|V|$ matrix A such that

$$
\begin{array}{ll}
A(u, v)=1 & \text { if }(u, v) \text { is an edge } \\
A(u, v)=0 & \text { otherwise }
\end{array}
$$

	1	2	3	4	5
	0	0	0	0	1
2	1	0	1	0	0
	1				
	0	1	0	0	0
4	0	0	0	1	0
5	0	0	1	1	0

Adjacency Matrix (3)

- Let $G=(V, E)$ be an input graph
- Using Adjacency Matrix representation :
- Space: $O\left(|V|^{2}\right)$
\rightarrow Bad when $|E|$ is small
- O(1) time to check if a vertex u is a neighbor of a vertex v
- $\Theta(|V|)$ time to list all neighbors
- can also represent weighted graph

