CS23561
Data Structures

Lecture 9:
Basic Data Structures IT

About this lecture

* A graph consists of a set of nodes and a
set of edges joining the nodes

A tree is a special kind of graph, where
there is one connected component, and
that it contains no cycles

- In this lecture, we introduce how to store

a tree, and how to store a graph

Tree

Classification of Trees

A) root

paal

rooted unrooted

Each edge connects No parent-child
a parent to a child relationship in an edge

Classification of Rooted Trees

o

ordered unordered

Has ordering No ordering
among children among children

Classification of Rooted Trees

binary non-binary

Each node has at No restrictions
most 2 children

Implementing an Ordered
Rooted Binary Tree

» Each node contains pointers that point to
the left child and the right child :

struct node {

struct node *left, *right ;

' o

Implementing an Ordered
Rooted Binary Tree

+ Also, each node may contain some info

 Ex: In a search tree for a set of integers,
each node contains an integer key

struct node {
| nt key ;
struct node *left, *right ;

' o

Implementing an Ordered
Rooted Binary Tree

* Once the definition of a node is done, we
can create a free

struct node root, X, Vy ;
root.left = & :
root.right = &y ;

X.left = x.right =vy.left = vy.right = NULL;

root

& o,

Remarks

+ It is easy to modify the definition of a
node to implement a rooted non-binary
tree (how?)

- Sometimes, we may also want to store a
pointer from a node to its parent, so as to
speed up movement in a tree

struct node {
| nt key ;
struct node *left, *right, *parent;

' o

10

Graph

@—
(D—

Graph

De e

undirected directed

12

Adjacency List (1)

For each vertex u, store its neighbors in

a linked list

@—
D—

3

D

1]

2]
|

[3]+

2]
|

(5]
|

vertex

1—>

w| O] O] | W] | Ol

—>

neighbors

13

Adjacency List (2)

* For each vertex u, store its neighbors in
a linked list

BIRE
?C@ [2] 113
T @) ﬂ:ﬁz
O—® i_.4
[5]13]14
I

vertex neighbors
14

Adjacency List (3)

* Let 6= (V, E) be an input graph
» Using Adjacency List representation :

- Space: O(|V]| + |E|)
= Excellent when |E| is small
» Easy to list all neighbors of a vertex

- Takes O(|V]) time to check if a vertex
u is a neighbor of a vertex v

» can also represent weighted graph

15

Adjacency Matrix (1)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise

1 2 3 4 5

1 [ol1]0]0]1

@*i>@ 2[1]ol1]0]0
slol1lol1]1

O—=6 slolol1]0]1
s |1]/of1]1]0

16

Adjacency Matrix (2)

- Usea |V]| x |V| matrix A such that

A(uv)=1 if (uyv)isanedge
A(u,v) =0 otherwise

1 2 3 4 5
T 1 [olo]o]o]1
> [170[1]0]0
?PT @ s3lo0l1lol0]0
O—E slololol1]0
5|0/0[1]1]0

17

Adjacency Matrix (3)

* Let 6= (V, E) be an input graph
» Using Adjacency Matrix representation :
+ Space: O(|V]?)

= Bad when |E]| is small

+ O(1) time to check if avertex uisa
neighbor of a vertex v

- O(|V]) time to list all neighbors
» can also represent weighted graph

18

