
1

CS2351
Data Structures

Lecture 5: Sorting in Linear Time

2

•Sorting algorithms we studied so far
–Insertion, Selection, Merge, Quicksort
 determine sorted order by comparison

•We will look at 3 new sorting algorithms
–Counting Sort, Radix Sort, Bucket Sort
 assume some properties on the input, and

determine the sorted order by distribution

About this lecture

3

Helping the Billionaire

•Your boss, Bill, is a billionaire
•Inside his BIG wallet, there

are a lot of bills, say, n bills
•Nine kinds of bills:

$1, $5, $10, $20, $50,
$100, $200, $500, $1000

4

Helping the Billionaire

•He did not care about the
ordering of the bills before

•But then, he has taken the
Algorithm course, and learnt
that if things are sorted, we
can search faster

The horoscope says I should use
only $500 notes today … Do I

have enough in the wallet?

5

A Proposal

500

1 5 10 20

100 200

50

1000

•Create a bin for each kind of bill
•Look at his bill one by one, and place the

bill in the corresponding bin
•Finally, collect bills in each bin, starting

from $1-bin, $5-bin, …, to $1000-bin

6

A Proposal

•In the previous algorithm, there is no
comparison between the items …
•But we can still sort correctly…WHY?

•Each step looks at the value of an item,
and distribute the item to the correct bin
•So, in the end, when a bill is collected,

its value must be larger than or equal to
all bills collected before  sorted

7

Sorting by Distribution

•Previous algorithm sorts the bills based
on distribution operations

•It works because:
•we have information about the values of

the input items  we can create bins

•We will look at more algorithms which are
based on the same distribution idea

8

Counting Sort

9

extra info
on values

Counting Sort

•Input: Array A[1..n] of n integers,
each has value from [0,k]

•Output: Sorted array of the n integers
•Idea 1: Create B[1..n] to store the output
•Idea 2: Process A[1..n] from right to left

•Use k + 2 counters:
•One for “which element to process”
•k + 1 for “where to place”

10

Counting Sort (Details)
Before Running

2 1 2 5 3 3 1 2
A

B

next elementc[0], c[1], c[2],
c[3], c[4], c[5]

k+1 counters

11

Counting Sort (Details)
Step 1: Set c[j] = location in B for placing the

next element if it has value j

2 1 2 5 3 3 1 2
A

B

next element

c[1] = 2

c[2] = 5 c[5] = 8

c[3] = 7c[0] = 0 c[4] = 7

12

Counting Sort (Details)
Step 2: Process next element of A and

update corresponding counter

2 1 2 5 3 3 1 2
A

2
B

next element

c[1] = 2

c[2] = 4 c[5] = 8

c[0] = 0 c[4] = 7c[3] = 7

13

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 2
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 4 c[5] = 8

c[1] = 1

next element

c[0] = 0 c[4] = 7c[3] = 7

14

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 2 3
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 4 c[5] = 8

c[4] = 7c[1] = 1 c[3] = 6

next element

c[0] = 0

15

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 2 3 3
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 4 c[5] = 8

c[1] = 1 c[3] = 5

next element

c[0] = 0 c[4] = 7

16

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 2 3 3 5
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 4 c[5] = 7

c[1] = 1 c[3] = 5

next element

c[0] = 0 c[4] = 7

17

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 2 2 3 3 5
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 3 c[5] = 7

c[1] = 1 c[3] = 5

next element

c[0] = 0 c[4] = 7

18

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 1 2 2 3 3 5
B

Step 2: Process next element of A and
update corresponding counter

c[2] = 3 c[5] = 7

c[1] = 0 c[3] = 5

next element

c[0] = 0 c[4] = 7

19

Counting Sort (Details)

2 1 2 5 3 3 1 2
A

1 1 2 2 2 3 3 5
B

Step 2: Done when all elements of A are processed

c[2] = 3 c[5] = 7

c[3] = 5

next element

c[1] = 0c[0] = 0 c[4] = 7

20

Counting Sort (Step 1)
How can we perform Step 1 smartly?

1. Initialize c[0], c[1], …, c[k] to 0

2. /* First, set c[j] = # elements with value j */

For x = 1,2,…,n, increase c[A[x]] by 1

3. /* Set c[j] = location in B to place next element
whose value is j (iteratively) */

For y = 1,2,…,k, c[y] = c[y-1] + c[y]

Time for Step 1 = (n + k)

21

Counting Sort (Step 2)
How can we perform Step 2 ?

/* Process A from right to left */

For x = n, n-1,…,2, 1
{ /* Process next element */

B[c[A[x]]] = A[x];
/* Update counter */

Decrease c[A[x]] by 1;
}

Time for Step 2 = (n)

22

Counting Sort (Running Time)

Conclusion:
•Running time = (n + k)
 if k = (n), time is (asymptotically) optimal

•Counting sort is also stable :
• elements with same value appear in same

order in before and after sorting

23

Stable Sort

2 1 2 5 3 3 1 2
Before
Sorting

1 1 2 2 2 3 3 5

After
Sorting

24

Radix Sort

25

extra info
on values

Radix Sort

•Input: Array A[1..n] of n integers,
each has d digits, and
each digit has value from [0,k]

•Output: Sorted array of the n integers
•Idea: Sort in d rounds

•At Round j, stable sort A on digit j
(where rightmost digit = digit 1)

26

Radix Sort (Example Run)

1 9 0 4

Before Running

2 5 7 9
1 8 7 4
6 3 5 5
4 4 3 2
8 3 1 8
1 3 0 4

4 digits

27

Radix Sort (Example Run)

1 9 0 4

Round 1: Stable sort digit 1

2 5 7 9
1 8 7 4
6 3 5 5
4 4 3 2
8 3 1 8
1 3 0 4

4 4 3 2
1 9 0 4
1 8 7 4
1 3 0 4
6 3 5 5
8 3 1 8
2 5 7 9

28

Radix Sort (Example Run)
Round 2: Stable sort digit 2

1 9 0 4
1 3 0 4
8 3 1 8
4 4 3 2
6 3 5 5
1 8 7 4
2 5 7 9

4 4 3 2
1 9 0 4
1 8 7 4
1 3 0 4

6 3 5 5
8 3 1 8
2 5 7 9

After Round 2, last 2 digits
are sorted (why?)

29

Radix Sort (Example Run)
Round 3: Stable sort digit 3

1 3 0 4
8 3 1 8
6 3 5 5
4 4 3 2
2 5 7 9
1 8 7 4
1 9 0 4

1 9 0 4
1 3 0 4
8 3 1 8
4 4 3 2
6 3 5 5
1 8 7 4
2 5 7 9

After Round 3, last 3 digits
are sorted (why?)

30

Radix Sort (Example Run)
Round 4: Stable sort digit 4

1 3 0 4
1 8 7 4
1 9 0 4
2 5 7 9
4 4 3 2
6 3 5 5
8 3 1 8

1 3 0 4
8 3 1 8
6 3 5 5
4 4 3 2
2 5 7 9
1 8 7 4
1 9 0 4

After Round 4, last 4 digits
are sorted (why?)

31

Radix Sort (Example Run)
Done when all digits are processed

1 3 0 4
1 8 7 4
1 9 0 4
2 5 7 9
4 4 3 2
6 3 5 5
8 3 1 8

The array is sorted (why?)

32

Radix Sort (Correctness)

Question:
“After r rounds, last r digits are sorted”
Why ??

Answer:
This can be proved by induction :
The statement is true for r = 1
Assume the statement is true for r = k
Then …

33

Radix Sort (Correctness)

At Round k+1,
• if two numbers differ in digit “k+1”, their

relative order [based on last k+1 digits] will be
correct after sorting digit “k+1”

• if two numbers match in digit “k+1”, their
relative order [based on last k+1 digits] will be
correct after stable sorting digit “k+1”(why?)

 Last “k+1”digits sorted after Round “k+1”

34

Radix Sort (Summary)

Conclusion:
•After d rounds, last d digits are sorted,

so that the numbers in A[1..n] are sorted

•There are d rounds of stable sort, each
can be done in (n + k) time

 Running time = (d (n + k))
• if d=(1) and k=(n), asymptotically optimal

35

Bucket Sort

36

extra info
on values

Bucket Sort

•Input: Array A[1..n] of n elements,
each is drawn uniformly at
random from the interval [0,1)

•Output: Sorted array of the n elements
•Idea:

Distribute elements into n buckets, so
that each bucket is likely to have fewer
elements  easier to sort

37

Bucket Sort (Details)

0.78, 0.17, 0.39, 0.26, 0.72,
0.94, 0.21, 0.12, 0.23, 0.68

Before
Running

Step 1:
Create n
buckets

n = #buckets
= #elements

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

each bucket represents a
subinterval of size 1/n

38

Bucket Sort (Details)
Step 2: Distribute each element to correct bucket

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

If Bucket j represents subinterval [j/n, (j+1)/n),
element with value x should be in Bucket bxnc

0.17
0.12

0.26
0.21

0.23
0.39

0.68
0.78

0.72 0.94

39

Bucket Sort (Details)
Step 3: Sort each bucket (by insertion sort)

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

0.12
0.17

0.21
0.23
0.26

0.39

0.68
0.72
0.78 0.94

40

Bucket Sort (Details)
Step 4: Collect elements from Bucket 0 to Bucket n-1

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)

[0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1)

0.12
0.17

0.21
0.23
0.26

0.39

0.68
0.72
0.78 0.94

0.12, 0.17, 0.21, 0.23, 0.26,
0.39, 0.68, 0.72, 0.78, 0.94

Sorted
Output

41

Bucket Sort (Running Time)
•Let X = # comparisons in all insertion sort

Running time = (n + X)

 worst-case running time = (n2)

varies on input

Finding average of X (i.e. #comparisons)
gives average running time

•How about average running time?

42

Average Running Time
Let nj = # elements in Bucket j

X · c(n0
2 + n1

2 + …+ nn-1
2)

varies on input

So, E[X] · E[c(n0
2 + n1

2 + …+ nn-1
2)]

= c E[n0
2 + n1

2 + …+ nn-1
2]

= c (E[n0
2] + E[n1

2] + …+ E[nn-1
2])

= cn E[n0
2] (by symmetry)

43

Average Running Time
Textbook (new one: p. 202—203,

old one: p. 175—176) shows that
E[n0

2] = 2 –(1/n)

 E[X] · cn E[n0
2] = 2cn –c

In other words, E[X] = (n)

 Average running time = (n)

44

For Interested Classmates
The following is how we can show

E[n0
2] = 2 –(1/n)

Recall that n0 = # elements in Bucket 0
So, suppose we set

Yk = 1 if element k is in Bucket 0
Yk = 0 if element k not in Bucket 0

Then, n0 = Y1 + Y2 + …+ Yn

45

For Interested Classmates
Then,

E[n0
2] = E[(Y1 + Y2 + …+ Yn)2]

= E[Y1
2 + Y2

2 + …+ Yn
2

+ Y1Y2 + Y1Y3 + …+ Y1Yn

+ Y2Y1 + Y2Y3 + …+ Y2Yn

+ …
+ YnY1 + YnY2 + …+ YnYn-1]

46

= E[Y1
2] + E[Y2

2] + …+ E[Yn
2]

+ E[Y1Y2] + …+ E[YnYn-1]
= n E[Y1

2] + n(n-1) E[Y1Y2]
(by symmetry)

The value of Y1
2 is either 1 (when Y1 = 1),

or 0 (when Y1 = 0)
The first case happens with 1/n chance

(when element 1 is in Bucket 0), so
E[Y1

2] = 1/n * 1 + (1- 1/n) * 0 = 1/n

47

For Y1Y2, it is either 1 (when Y1=1 and Y2=1),
or 0 (otherwise)

The first case happens with 1/n2 chance
(when both element 1 and element 2 are in
Bucket 0), so
E[Y1Y2] = 1/n2 * 1 + (1- 1/n2) * 0 = 1/n2

Thus, E[n0
2] = n E[Y1

2] + n(n-1) E[Y1Y2]
= n (1/n) + n(n-1) (1/n2)
= 2 –1/n

