CS2351 Data Structures

Lecture 5: Sorting in Linear Time

About this lecture

- Sorting algorithms we studied so far
- Insertion, Selection, Merge, Quicksort
\rightarrow determine sorted order by comparison
- We will look at 3 new sorting algorithms
- Counting Sort, Radix Sort, Bucket Sort
\rightarrow assume some properties on the input, and determine the sorted order by distribution

Helping the Billionaire

- Your boss, Bill, is a billionaire
- Inside his BIG wallet, there are a lot of bills, say, n bills
- Nine kinds of bills: \$1, \$5, \$10, \$20, \$50, $\$ 100, \$ 200, \$ 500, \$ 1000$

Helping the Billionaire

- He did not care about the ordering of the bills before
- But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only $\$ 500$ notes today ... Do I have enough in the wallet?

A Proposal

- Create a bin for each kind of bill
- Look at his bill one by one, and place the bill in the corresponding bin
- Finally, collect bills in each bin, starting from \$1-bin, \$5-bin, ..., to \$1000-bin

A Proposal

- In the previous algorithm, there is no comparison between the items ...
- But we can still sort correctly... WHY?
- Each step looks at the value of an item, and distribute the item to the correct bin
- So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before \rightarrow sorted

Sorting by Distribution

- Previous algorithm sorts the bills based on distribution operations
- It works because:
- we have information about the values of the input items \rightarrow we can create bins
- We will look at more algorithms which are based on the same distribution idea

Counting Sort

Counting Sort

extra info on values

- Input: Array A[1..n] of n integers, each has value from [0,k]
- Output: Sorted array of the n integers
- Idea 1: Create B[1..n] to store the output
- Idea 2: Process A[1..n] from right to left
- Use k + 2 counters:
- One for "which element to process"
- k+1 for "where to place"

Counting Sort (Details)

Before Running

Counting Sort (Details)

Step 1: Set $c[j]=$ location in B for placing the next element if it has value j

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

next element

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

next element

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

next element

Counting Sort (Details)

Step 2: Process next element of A and update corresponding counter

A

next element

Counting Sort (Details)

Step 2: Done when all elements of A are processed

next element

Counting Sort (Step 1)

How can we perform Step 1 smartly?

1. Initialize $c[0], c[1], \ldots, c[k]$ to 0
2. /* First, set $c[j]=$ \# elements with value j */

For $x=1,2, \ldots, n$, increase $c[A[x]]$ by 1
3. $/ *$ Set $c[j]=$ location in B to place next element whose value is j (iteratively) */
For $y=1,2, \ldots, k, c[y]=c[y-1]+c[y]$
Time for Step $1=O(n+k)$

Counting Sort (Step 2)

How can we perform Step 2 ?

/* Process A from right to left */
For $x=n, n-1, \ldots, 2,1$
\{ /* Process next element */

$$
\mathrm{B}[\mathrm{c}[\mathrm{~A}[\mathrm{x}]]]=\mathrm{A}[\mathrm{x}] ;
$$

/* Update counter */
Decrease c $[A[x]]$ by 1 ;
\}
Time for Step 2 $=O(n)$

Counting Sort (Running Time)

Conclusion:

- Running time $=\mathrm{O}(n+k)$
\rightarrow if $k=O(n)$, time is (asymptotically) optimal
- Counting sort is also stable:
- elements with same value appear in same order in before and after sorting

Stable Sort

Before
Sorting

After

Radix Sort

Radix Sort

 extra infoon values

- Input: Array A[1..n] of n integers, each has digits, and each digit has value from [$0, \mathrm{k}$]
- Output: Sorted array of the n integers
- Idea: Sort in d rounds
- At Round j, stable sort A on digit j (where rightmost digit = digit 1)

Radix Sort (Example Run)

Before Running

$$
\begin{array}{r}
1904 \\
2579 \\
1874 \\
6355 \\
4432 \\
8318 \\
1304
\end{array}
$$

Radix Sort (Example Run)

Round 1: Stable sort digit 1

190	4	
257	9	
187	4	
635	5	
443	2	
831	8	
130	4	
		1904
	1874	
	1304	
	6355	
8318		
2579		

Radix Sort (Example Run)

Round 2: Stable sort digit 2

4432	1904
1904	1304
1874	8318
1304	4432
6355	6355
8318	1874
2579	2579

After Round 2, last 2 digits are sorted (why?)

Radix Sort (Example Run)

Round 3: Stable sort digit 3

After Round 3, last 3 digits are sorted (why?)

Radix Sort (Example Run)

Round 4: Stable sort digit 4

1304	1304
8318	1874
6355	1904
4432	2579
2579	4432
1874	6355
1904	8318
After ar	4 digits ny?)

Radix Sort (Example Run)

Done when all digits are processed

$$
\begin{aligned}
& 1304 \\
& 1874 \\
& 1904 \\
& 2579 \\
& 4432 \\
& 6355 \\
& 8318
\end{aligned}
$$

The array is sorted (why?)

Radix Sort (Correctness)

Question:
"After r rounds, last r digits are sorted" Why ??
Answer:
This can be proved by induction:
The statement is true for $r=1$
Assume the statement is true for $r=k$
Then ...

Radix Sort (Correctness)

At Round k+1,

- if two numbers differ in digit " $k+1$ ", their relative order [based on last $k+1$ digits] will be correct after sorting digit " $k+1$ "
- if two numbers match in digit " $k+1$ ", their relative order [based on last $k+1$ digits] will be correct after stable sorting digit " $k+1$ " (why?)
\rightarrow Last " $k+1$ " digits sorted after Round " $k+1$ "

Radix Sort (Summary)

Conclusion:

- After d rounds, last d digits are sorted, so that the numbers in A[1..n] are sorted
- There are d rounds of stable sort, each can be done in $\mathrm{O}(n+k)$ time
\Rightarrow Running time $=O(d(n+k))$
- if $\mathrm{d}=\mathrm{O}(1)$ and $\mathrm{k}=\mathrm{O}(\mathrm{n})$, asymptotically optimal

Bucket Sort

Bucket Sort

 extra info on values- Input: Array $A[1 . . n]$ of n elements each is drawn uniformly at random from the interval $[0,1)$
- Output: Sorted array of the n elements
- Idea:

Distribute elements into n buckets, so that each bucket is likely to have fewer elements \rightarrow easier to sort

Bucket Sort (Details)

each bucket represents a subinterval of size $1 / n$

Bucket Sort (Details)

Step 2: Distribute each element to correct bucket

If Bucket j represents subinterval $[j / n,(j+1) / n)$, element with value \times should be in Bucket $\lfloor x n\rfloor$

Bucket Sort (Details)

Step 3: Sort each bucket (by insertion sort)

Bucket Sort (Details)

Step 4: Collect elements from Bucket 0 to Bucket n-1

Bucket Sort (Running Time)

- Let $X=\#$ comparisons in all insertion sort Running time $=\Theta(n+X) \rightarrow$ varies on input
\rightarrow worst-case running time $=\Theta\left(n^{2}\right)$
- How about average running time?

Finding average of X (i.e. \#comparisons) gives average running time

Average Running Time

Let $n_{j}=\#$ elements in Bucket j

$$
\text { So, } \begin{aligned}
E[X] & \leq E\left[c\left(n_{0}^{2}+n_{1}^{2}+\ldots+n_{n-1}^{2}\right)\right] \\
& =c E\left[n_{0}^{2}+n_{1}^{2}+\ldots+n_{n-1}^{2}\right] \\
& =c\left(E\left[n_{0}^{2}\right]+E\left[n_{1}^{2}\right]+\ldots+E\left[n_{n-1}^{2}\right]\right) \\
& =c n E\left[n_{0}^{2}\right] \quad \text { varies on input } \\
& \begin{aligned}
& \\
& \text { (by symmetry) }
\end{aligned}
\end{aligned}
$$

Average Running Time

Textbook (new one: p. 202-203, old one: p. 175-176) shows that $E\left[n_{0}{ }^{2}\right]=2-(1 / n)$
$\rightarrow E[X] \leq c n E\left[n_{0}{ }^{2}\right]=2 c n-c$
In other words, $\mathrm{E}[\mathrm{X}]=\mathrm{O}(\mathrm{n})$
\rightarrow Average running time $=\Theta(n)$

For Interested Classmates

The following is how we can show

$$
E\left[n_{0}^{2}\right]=2-(1 / n)
$$

Recall that $n_{0}=\#$ elements in Bucket 0
So, suppose we set

$$
\begin{aligned}
& y_{k}=1 \text { if element } k \text { is in Bucket } 0 \\
& y_{k}=0 \text { if element } k \text { not in Bucket } 0
\end{aligned}
$$

Then, $n_{0}=Y_{1}+Y_{2}+\ldots+Y_{n}$

For Interested Classmates

Then,

$$
\begin{aligned}
E\left[n_{0}^{2}\right]= & E\left[\left(y_{1}+y_{2}+\ldots+y_{n}\right)^{2}\right] \\
= & E\left[y_{1}{ }^{2}+y_{2}{ }^{2}+\ldots+y_{n}{ }^{2}\right. \\
& +y_{1} y_{2}+y_{1} y_{3}+\ldots+y_{1} y_{n} \\
& +y_{2} y_{1}+y_{2} y_{3}+\ldots+y_{2} y_{n} \\
& +\ldots \\
& \left.+y_{n} y_{1}+y_{n} y_{2}+\ldots+y_{n} y_{n-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =E\left[Y_{1}{ }^{2}\right]+E\left[Y_{2}{ }^{2}\right]+\ldots+E\left[Y_{n}{ }^{2}\right] \\
& +E\left[Y_{1} Y_{2}\right]+\ldots+E\left[Y_{n} Y_{n-1}\right] \\
& =n E\left[Y_{1}{ }^{2}\right]+n(n-1) E\left[Y_{1} Y_{2}\right] \\
& \text { (by symmetry) }
\end{aligned}
$$

The value of Y_{1}^{2} is either 1 (when $Y_{1}=1$), or $0\left(\right.$ when $\left.Y_{1}=0\right)$
The first case happens with $1 / n$ chance (when element 1 is in Bucket 0), so

$$
E\left[Y_{1}^{2}\right]=1 / n * 1+(1-1 / n) * 0=1 / n
$$

For $\mathrm{y}_{1} \mathrm{y}_{2}$, it is either 1 (when $\mathrm{y}_{1}=1$ and $\mathrm{Y}_{2}=1$), or 0 (otherwise)
The first case happens with $1 / n^{2}$ chance (when both element 1 and element 2 are in Bucket 0), so

$$
E\left[Y_{1} Y_{2}\right]=1 / n^{2} * 1+\left(1-1 / n^{2}\right) * 0=1 / n^{2}
$$

Thus, $E\left[n_{0}{ }^{2}\right]=n E\left[Y_{1}{ }^{2}\right]+n(n-1) E\left[Y_{1} Y_{2}\right]$

$$
\begin{aligned}
& =n(1 / n)+n(n-1)\left(1 / n^{2}\right) \\
& =2-1 / n
\end{aligned}
$$

