CS2351 Data Structures

Lecture 5: Sorting in Linear Time

About this lecture

- Sorting algorithms we studied so far

 Insertion, Selection, Merge, Quicksort
 determine sorted order by comparison
- We will look at 3 new sorting algorithms
 - Counting Sort, Radix Sort, Bucket Sort
 - assume some properties on the input, and determine the sorted order by distribution

Helping the Billionaire

- Your boss, Bill, is a billionaire
- Inside his BIG wallet, there are a lot of bills, say, n bills
- Nine kinds of bills:
 \$1, \$5, \$10, \$20, \$50, \$100, \$200, \$500, \$1000

Helping the Billionaire

- He did not care about the ordering of the bills before
- But then, he has taken the Algorithm course, and learnt that if things are sorted, we can search faster

The horoscope says I should use only \$500 notes today ... Do I have enough in the wallet?

A Proposal

- Create a bin for each kind of bill
- Look at his bill one by one, and place the bill in the corresponding bin
- Finally, collect bills in each bin, starting from \$1-bin, \$5-bin, ..., to \$1000-bin

A Proposal

- In the previous algorithm, there is no comparison between the items ...
 - But we can still sort correctly... WHY?
- Each step looks at the value of an item, and distribute the item to the correct bin
 - So, in the end, when a bill is collected, its value must be larger than or equal to all bills collected before -> sorted

Sorting by Distribution

- Previous algorithm sorts the bills based on distribution operations
- It works because:
 - we have information about the values of the input items
 we can create bins
- We will look at more algorithms which are based on the same distribution idea

Counting Sort

Counting Sort

extra info on values

- Input: Array A[1..n] of n integers, each has value from [0,k]
- Output: Sorted array of the n integers
- Idea 1: Create B[1..n] to store the output
- Idea 2: Process A[1...n] from right to left
 - Use k + 2 counters:
 - One for "which element to process"
 - k + 1 for "where to place"

Before Running

Step 2: Done when all elements of A are processed

Counting Sort (Step 1) How can we perform Step 1 smartly?

- 1. Initialize c[0], c[1], ..., c[k] to 0
- 2. /* First, set c[j] = # elements with value j */
 For x = 1,2,...,n, increase c[A[x]] by 1
- 3. /* Set c[j] = location in B to place next element whose value is j (iteratively) */

For y = 1, 2, ..., k, c[y] = c[y-1] + c[y]

Time for Step 1 = O(n + k)

Counting Sort (Step 2) How can we perform Step 2? /* Process A from right to left */ For x = n, n-1, ..., 2, 1/* Process next element */ B[c[A[x]]] = A[x];/* Update counter */ Decrease c[A[x]] by 1; Time for Step 2 = O(n)

Counting Sort (Running Time)

Conclusion:

- Running time = O(n + k)
 → if k = O(n), time is (asymptotically) optimal
- Counting sort is also stable :
 - elements with same value appear in same order in before and after sorting

Stable Sort

Radix Sort

Radix Sort

extra info on values

- Input: Array A[1..n] of n integers, each has d digits, and each digit has value from [0,k]
- Output: Sorted array of the n integers
- Idea: Sort in d rounds
 - At Round j, stable sort A on digit j (where rightmost digit = digit 1)

Before Running

Round 1: Stable sort digit 1

Round 2: Stable sort digit 2

After Round 2, last 2 digits are sorted (why?)

Round 3: Stable sort digit 3

After Round 3, last 3 digits are sorted (why?)

Round 4: Stable sort digit 4

After Round 4, last 4 digits are sorted (why?)

Done when all digits are processed

The array is sorted (why?)

Radix Sort (Correctness)

Question:

- "After r rounds, last r digits are sorted" Why ??
- Answer:
 - This can be proved by induction :
 - The statement is true for r = 1
 - Assume the statement is true for r = kThen ...

Radix Sort (Correctness)

At Round k+1,

- if two numbers differ in digit "k+1", their relative order [based on last k+1 digits] will be correct after sorting digit "k+1"
- if two numbers match in digit "k+1", their relative order [based on last k+1 digits] will be correct after stable sorting digit "k+1" (why?)

→ Last "k+1" digits sorted after Round "k+1"

Radix Sort (Summary)

Conclusion:

- After d rounds, last d digits are sorted, so that the numbers in A[1..n] are sorted
- There are d rounds of stable sort, each can be done in O(n + k) time
 - \rightarrow Running time = O(d(n + k))
 - if d=O(1) and k=O(n), asymptotically optimal

Bucket Sort

Bucket Sort

extra info on values

- Input: Array A[1..n] of n elements, each is drawn uniformly at random from the interval [0,1)
- Output: Sorted array of the n elements
- Idea:

Distribute elements into n buckets, so that each bucket is likely to have fewer elements \rightarrow easier to sort

each bucket represents a subinterval of size 1/n

Step 2: Distribute each element to correct bucket

Step 3: Sort each bucket (by insertion sort)

Step 4: Collect elements from Bucket 0 to Bucket n-1

Bucket Sort (Running Time)

- Let X = # comparisons in all insertion sort Running time = ⊕(n + (X)) → varies on input
 → worst-case running time = ⊕(n²)
- How about average running time?

Finding average of X (i.e. #comparisons) gives average running time

Average Running Time Let n_i = # elements in Bucket j $X \leq c((n_0^2) + (n_1^2) + ... + (n_{n-1}^2))$ varies on input So, $E[X] \leq E[c(n_0^2 + n_1^2 + ... + n_{n-1}^2)]$ = $c E[n_0^2 + n_1^2 + ... + n_{n-1}^2]$ = c (E[n_0^2] + E[n_1^2] + ... + E[n_{n-1}^2]) = $cn E[n_0^2]$ (by symmetry)

Average Running Time Textbook (new one: p. 202-203, old one: p. 175-176) shows that $E[n_0^2] = 2 - (1/n)$ → $E[X] \le cn E[n_0^2] = 2cn - c$ In other words, E[X] = O(n) \rightarrow Average running time = $\Theta(n)$

For Interested Classmates The following is how we can show $E[n_0^2] = 2 - (1/n)$ Recall that $n_0 = \#$ elements in Bucket 0 So, suppose we set $Y_{k} = 1$ if element k is in Bucket 0 $Y_{k} = 0$ if element k not in Bucket 0

Then, $n_0 = Y_1 + Y_2 + ... + Y_n$

For Interested Classmates

Then, $E[n_0^2] = E[(Y_1 + Y_2 + ... + Y_n)^2]$ = $E[Y_1^2 + Y_2^2 + ... + Y_n^2]$ + Y_1Y_2 + Y_1Y_3 + ... + Y_1Y_n $+ Y_2 Y_1 + Y_2 Y_3 + ... + Y_2 Y_n$ + ... $+ Y_{n}Y_{1} + Y_{n}Y_{2} + ... + Y_{n}Y_{n-1}$ = $E[Y_1^2] + E[Y_2^2] + ... + E[Y_n^2]$ + $E[Y_1Y_2] + ... + E[Y_nY_{n-1}]$ = $n E[Y_1^2] + n(n-1) E[Y_1Y_2]$ (by symmetry)

The value of Y_1^2 is either 1 (when $Y_1 = 1$), or 0 (when $Y_1 = 0$)

The first case happens with 1/n chance (when element 1 is in Bucket 0), so $E[Y_1^2] = 1/n * 1 + (1 - 1/n) * 0 = 1/n$ For Y_1Y_2 , it is either 1 (when $Y_1=1$ and $Y_2=1$), or 0 (otherwise)

The first case happens with 1/n² chance (when both element 1 and element 2 are in Bucket 0), so

 $E[Y_1Y_2] = 1/n^2 * 1 + (1 - 1/n^2) * 0 = 1/n^2$

Thus, $E[n_0^2] = n E[Y_1^2] + n(n-1) E[Y_1Y_2]$ = $n (1/n) + n(n-1) (1/n^2)$ = 2 - 1/n