CS2351 Data Structures

Lecture 2: Growth of Function

About this lecture

- · Introduce Asymptotic Notation
 - $\Theta()$, O(), $\Omega()$, o(), $\omega()$

Dominating Term

Recall that for input size n,

Insertion Sort's running time is:

$$An^2 + Bn + C$$
, (A,B,C are constants)

· Merge Sort's running time is:

Dn
$$log n + En + F$$
, (D,E,F are constants)

 To compare their running times for large n, we can just focus on the dominating term

(the term that grows fastest when n increases)

- An2 vs Dn log n

Dominating Term

- If we look more closely, the leading constants in the dominating term does not affect much in this comparison
 - We may as well compare n^2 vs $n \log n$ (instead of An^2 vs $Dn \log n$)
- As a result, we conclude that Merge Sort is better than Insertion Sort when n is sufficiently large

Asymptotic Efficiency

- The previous comparison studies the asymptotic efficiency of two algorithms
- If algorithm P is asymptotically faster than algorithm Q, P is often a better choice
- To aid (and simplify) our study in the asymptotic efficiency, we now introduce some useful asymptotic notation

Big-O notation

Rough Meaning: O(g(n)) includes all functions that are upper bounded by g(n)

Big-O notation (example)

```
• 4n ∈ O(5n) [ proof: c = 1, n ≥ 1]

• 4n ∈ O(n) [ proof: c = 4, n ≥ 1]

• 4n + 3 ∈ O(n) [ proof: c = 5, n ≥ 3]

• n ∈ O(0.001n^2) [ proof: c = 1, n ≥ 100 ]

• log_e n ∈ O(log n) [ proof: c = 1, n ≥ 1 ]

• log n ∈ O(log_e n) [ proof: c = log e, n ≥ 1 ]
```

Remark: Usually, we will slightly abuse the notation, and write f(n) = O(g(n)) to mean $f(n) \in O(g(n))$

Big-Omega notation

```
Definition: Given a function g(n), we denote
 \Omega(q(n)) to be the set of functions
 { f(n) | there exists positive constants
           c and no such that
                  0 \le c g(n) \le f(n)
           for all n \geq n_0
```

Rough Meaning: $\Omega(g(n))$ includes all functions that are lower bounded by g(n)

Big-O and Big-Omega

• Similar to Big-O, we will slightly abuse the notation, and write $f(n) = \Omega(g(n))$ to mean $f(n) \in \Omega(g(n))$

Relationship between Big-O and Big- Ω : $f(n) = \Omega(g(n)) \Leftrightarrow g(n) = O(f(n))$

Big- Ω notation (example)

```
• 5n = \Omega(4n) [ proof: c = 1, n \ge 1]

• n = \Omega(4n) [ proof: c = 1/4, n \ge 1]

• 4n + 3 = \Omega(n) [ proof: c = 1, n \ge 1]

• 0.001n^2 = \Omega(n) [ proof: c = 1, n \ge 100]

• log_e n = \Omega(log_e n) [ proof: c = 1/log_e, n \ge 1]

• log_n = \Omega(log_e n) [ proof: c = 1, n \ge 1]
```

Θ notation (Big-O \cap Big- Ω)

Meaning: Those functions which can be both upper bounded and lower bounded by of g(n)

Big-O, Big- Ω , and Θ

• Similarly, we write $f(n) = \Theta(g(n))$ to mean $f(n) \in \Theta(g(n))$

Relationship between Big-O, Big-
$$\Omega$$
, and Θ :
$$f(n) = \Theta(g(n))$$

$$\Leftrightarrow$$

$$f(n) = \Omega(g(n)) \text{ and } f(n) = O(g(n))$$

O notation (example)

- $4n = \Theta(n)$ [$c_1 = 1, c_2 = 4, n \ge 1$] • $4n + 3 = \Theta(n)$ [$c_1 = 1, c_2 = 5, n \ge 3$] • $\log_e n = \Theta(\log n)$ [$c_1 = 1/\log e, c_2 = 1, n \ge 1$]
- Running Time of Insertion Sort = $\Theta(n^2)$
 - If not specified, running time refers to the worst-case running time
- Running Time of Merge Sort = $\Theta(n \log n)$

Little-o notation

```
Definition: Given a function g(n), we denote
 o(q(n)) to be the set of functions
 { f(n) | for any positive c, there exists
          positive constant no such that
               0 \le f(n) \le cg(n)
for all n \ge n_0
```

Note the similarities and differences with Big-O

Little-o (equivalent definition)

Definition: Given a function g(n), o(g(n)) is the set of functions

$$\{f(n) \mid \lim_{n\to\infty} (f(n)/g(n)) = 0\}$$

Examples:

- $\cdot 4n = o(n^2)$
- $n log n = o(n^{1.000001})$
- $n \log n = o(n \log^2 n)$

Little-omega notation

```
Definition: Given a function g(n), we denote
 \omega(q(n)) to be the set of functions
 { f(n) | for any positive c, there exists
          positive constant no such that
          0 \le ag(n)(<)f(n) for all n \ge na
```

Note the similarities and differences with the Big-Omega definition

Little-omega (equivalent definition)

Definition: Given a function g(n), $\omega(g(n))$ is the set of functions

$$\{f(n) \mid \lim_{n\to\infty} (g(n)/f(n)) = 0\}$$

Relationship between Little-o and Little- ω :

$$f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$$

To remember the notation:

O is like
$$\leq$$
: $f(n) = O(g(n))$ means $f(n) \leq cg(n)$

$$\Omega$$
 is like \geq : $f(n) = \Omega(g(n))$ means $f(n) \geq cg(n)$

$$\Theta$$
 is like = : $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$

o is like
$$<$$
: $f(n) = o(g(n))$ means $f(n) < cg(n)$

$$\omega$$
 is like >: $f(n) = \omega(g(n))$ means $f(n) > cg(n)$

Note: Not any two functions can be compared asymptotically $(E.g., sin \times vs cos \times)$

What's wrong with it?

Your friend, after this lecture, has tried to prove 1+2+...+n = O(n)

- His proof is by induction:
- First, 1 = O(n)
- Assume 1+2+...+k = O(n)
- Then, 1+2+...+k+(k+1) = O(n) + (k+1)= O(n) + O(n) = O(2n) = O(n)
- So, 1+2+...+n = + O(n) [where is the bug??]