CS2351 Data Structures

Lecture 2: Growth of Function

About this lecture

- Introduce Asymptotic Notation

$$
-\Theta(), O(), \Omega(), o(), \omega()
$$

Dominating Term

Recall that for input size n,

- Insertion Sort 's running time is:

$$
A n^{2}+B n+C, \quad(A, B, C \text { are constants })
$$

- Merge Sort 's running time is:

$$
\text { Dn } \log n+E n+F, \quad(D, E, F \text { are constants) }
$$

- To compare their running times for large n, we can just focus on the dominating term (the term that grows fastest when n increases)
- $A n^{2}$ vs Dn $\log n$

Dominating Term

- If we look more closely, the leading constants in the dominating term does not affect much in this comparison
- We may as well compare n^{2} vs $n \log n$ (instead of $A n^{2}$ vs $D n \log n$)
- As a result, we conclude that Merge Sort is better than Insertion Sort when n is sufficiently large

Asymptotic Efficiency

- The previous comparison studies the asymptotic efficiency of two algorithms
- If algorithm P is asymptotically faster than algorithm Q, P is often a better choice
- To aid (and simplify) our study in the asymptotic efficiency, we now introduce some useful asymptotic notation

Big-O notation

Definition: Given a function $g(n)$, we denote $O(g(n))$ to be the set of functions
$\{f(n) \mid$ there exists positive constants c and n_{0} such that

$$
0 \leq f(n) \leq c g(n)
$$

for all $\left.n \geq n_{0}\right\}$
Rough Meaning: $O(g(n))$ includes all functions that are upper bounded by $g(n)$

Big-O notation (example)

- $4 n \in O(5 n)$
- $4 n \in O(n)$
- $4 n+3 \in O(n)$
- $n \in O\left(0.001 n^{2}\right) \quad[$ proof: $c=1, n \geq 100]$
- $\log _{e} n \in O(\log n)$ [proof: $c=1, n \geq 1$]
- $\log n \in O\left(\log _{e} n\right)$ [proof: $\left.c=\log e, n \geq 1\right]$

Remark: Usually, we will slightly abuse the notation, and write $f(n)=O(g(n))$ to mean $f(n) \in O(g(n))$

Big-Omega notation

Definition: Given a function $g(n)$, we denote $\Omega(g(n))$ to be the set of functions
$\{f(n) \mid$ there exists positive constants c and n_{0} such that

$$
0 \leq c g(n) \leq f(n)
$$

for all $\left.n \geq n_{0}\right\}$
Rough Meaning: $\Omega(g(n))$ includes all functions that are lower bounded by $g(n)$

Big-O and Big-Omega

- Similar to Big-O, we will slightly abuse the notation, and write $f(n)=\Omega(g(n))$ to mean $f(n) \in \Omega(g(n))$

Relationship between Big-O and $\mathrm{Big}-\Omega$:

$$
f(n)=\Omega(g(n)) \Leftrightarrow g(n)=O(f(n))
$$

Big- Ω notation (example)

- $5 n=\Omega(4 n)$
[proof: $c=1, n \geq 1$]
- $n=\Omega(4 n)$
- $4 n+3=\Omega(n)$
[proof: $c=1 / 4, n \geq 1$]
[proof: $c=1, n \geq 1$]
- 0.001 $n^{2}=\Omega(n) \quad[$ proof: $c=1, n \geq 100]$
- $\log _{e} n=\Omega(\log n)$ [proof: $\left.c=1 / \log e, n \geq 1\right]$
- $\log n=\Omega\left(\log _{e} n\right) \quad[$ proof: $c=1, n \geq 1]$

Θ notation (Big-O \cap Big- Ω)

Definition: Given a function $g(n)$, we denote $\Theta(g(n))$ to be the set of functions
$\{f(n) \mid$ there exists positive constants c_{1}, c_{2}, and n_{0} such that

$$
0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)
$$

for all $\left.n \geq n_{0}\right\}$
Meaning: Those functions which can be both upper bounded and lower bounded by of $g(n)$

Big-O, Big- Ω, and Θ

- Similarly, we write $f(n)=\Theta(g(n))$ to mean $f(n) \in \Theta(g(n))$

Relationship between $\operatorname{Big}-O, \operatorname{Big}-\Omega$, and Θ :

$$
\begin{gathered}
f(n)=\Theta(g(n)) \\
\Leftrightarrow \\
f(n)=\Omega(g(n)) \text { and } f(n)=O(g(n))
\end{gathered}
$$

Θ notation (example)

- $4 n=\Theta(n)$
$\left[c_{1}=1, c_{2}=4, n \geq 1\right]$
- $4 n+3=\Theta(n)$
$\left[c_{1}=1, c_{2}=5, n \geq 3\right]$
- $\log _{e} n=\Theta(\log n) \quad\left[c_{1}=1 / \log e, c_{2}=1, n \geq 1\right]$
- Running Time of Insertion Sort $=\Theta\left(n^{2}\right)$
- If not specified, running time refers to the worst-case running time
- Running Time of Merge Sort $=\Theta(n \log n)$

Little-o notation

Definition: Given a function $g(n)$, we denote $o(g(n))$ to be the set of functions
\{ $f(n)$ for any positive 0 , there exists positive constant n_{0} such that

$$
0 \leq\lceil f(n) \odot c g(n)
$$

$$
\text { for all } \left.n \geq \eta_{0}^{\wedge}\right\}
$$

Note the similarities and differences with Big-O

Little-o (equivalent definition)

Definition: Given a function $g(n), o(g(n))$ is the set of functions

$$
\left\{f(n) \mid \lim _{n \rightarrow \infty}(f(n) / g(n))=0\right\}
$$

Examples:

- $4 n=o\left(n^{2}\right)$
- $n \log n=o\left(n^{1.000001}\right)$
- $n \log n=o\left(n \log ^{2} n\right)$

Little-omega notation

Definition: Given a function $g(n)$, we denote $\omega(g(n))$ to be the set of functions
$\{f(n)$ for any positive c, there exists positive constant n_{0} such that
$0 \leq \oint g(n)<f(n)$
for all $n \geq n\}\}$
Note the similarities and differences with the BigOmega definition

Little-omega (equivalent definition)

Definition: Given a function $g(n), \omega(g(n))$ is the set of functions

$$
\left\{f(n) \mid \lim _{n \rightarrow \infty}(g(n) / f(n))=0\right\}
$$

Relationship between Little-o and Little- ω :

$$
f(n)=\omega(g(n)) \Leftrightarrow g(n)=o(f(n))
$$

To remember the notation:
O is like $\leq: \quad f(n)=O(g(n))$ means $f(n) \leq c g(n)$
Ω is like $\geq: \quad f(n)=\Omega(g(n))$ means $f(n) \geq c g(n)$
Θ is like $=: \quad f(n)=\Theta(g(n)) \Leftrightarrow g(n)=\Theta(f(n))$
o is like $<$: $\quad f(n)=o(g(n))$ means $f(n)<c g(n)$
ω is like $>: \quad f(n)=\omega(g(n))$ means $f(n)>c g(n)$
Note: Not any two functions can be compared asymptotically (E.g., $\sin x$ vs $\cos x$)

What's wrong with it?

Your friend, after this lecture, has tried to prove $1+2+\ldots+n=O(n)$

- His proof is by induction:
- First, $1=\mathrm{O}(\mathrm{n})$
- Assume $1+2+\ldots+k=O(n)$
- Then, $1+2+\ldots+k+(k+1)=O(n)+(k+1)$

$$
=\mathrm{O}(n)+\mathrm{O}(n)=\mathrm{O}(2 n)=\mathrm{O}(n)
$$

So, $1+2+\ldots+n=+O(n) \quad$ [where is the bug??]

