CS2351 Data Structures

Classwork for Lecture 2

Exercise on Θ notation

Show the following bound:

$$
\text { 1. } \sum_{k=1 \text { ton }} k=1+2+3+\ldots+n=\Theta\left(n^{2}\right)
$$

Exercise on Θ notation

Show the following bound:

$$
\text { 2. } \sum_{k=1 \text { to } n} k^{2}=1+4+9+\ldots+n^{2}=\Theta\left(n^{3}\right)
$$

Exercise on Θ notation

Show the following bound:

$$
\text { 3. } \sum_{k=1 \text { ton }}(1 / k)=1+(1 / 2)+\ldots+(1 / n)=\Theta(\log n)
$$

More Exercises

4. For $|c|<1$, can you simplify

$$
\sum_{\mathrm{k}=0 \text { to } \infty} c^{\mathrm{k}}=1+c+c^{2}+\ldots ?
$$

More Exercises

5. For $|c|<1$, can you show that

$$
\begin{aligned}
\Sigma_{k=1+o \infty} k c^{k} & =c+2 c^{2}+3 c^{3}+\ldots \\
& =c /(1-c)^{2} ?
\end{aligned}
$$

More Exercises

6. Can you simplify this summation?

$$
\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\ldots+\frac{1}{n(n+1)}
$$

Challenge

What is the name of this sequence:

$$
1,1,2,3,5,8,13,21,34, \ldots ?
$$

(a) Can you write a recursive program finding the $n^{\text {th }}$ term? What will be the running time?
(b) Can you write a better program to improve the running time to $O(n)$?
(c) Can you think of an even faster way?

