
1

CS2351
Data Structures

Lecture 18:
Hashing II

2

•The Hashing Problem
•Hash with Chaining
•Hash with Open Addressing

•Choosing a good Hash Function
** Universal Hash Function

About this lecture

3

Hash Function for Chaining

4

What is a good hash function ?
•A good hash function should satisfy the

simple uniform hashing assumption :

1. Each element of U is equally likely to
be mapped into any of the m entries

2. Also, it is independent of where any
other element is mapped to

•However, it is difficult to check, as we
often don’t know the key distribution

5

What is a good hash function ?
•Sometimes we do know …

Ex : Suppose keys are random real
numbers drawn independently and
uniformly from [0,1)

 The hash function
h(k) = km 

satisfies the simple uniform hashing

6

What is a good hash function ?
•In practice, we use heuristics to create

hash functions
•May not satisfy simple uniform

hashing, but performs well

•A general idea is to avoid the hash value
to be dependent on the patterns that
might exist in the key

7

The Division Method
•In division method we map key k into

one of the m slots by :
h(k) = k % m

Ex : if m = 12, k = 100  h(k) = 4

•Should avoid m = power of 2 (why?)
•A prime not close to power of 2 is

usually a good choice
Ex : n = 2000, we may choose m = 701

8

The Multiplication Method
•In multiplication method we compute

the hash value in 3 steps
1. Fix a constant A from (0,1)
2. Multiply the key k with A and take

the fractional part
3. Multiply the fractional part with m,

and take the floor of the result
•In summary : h(k) = m { kA } 

where { x } denote the fractional part of x

9

The Multiplication Method
•Unlike the division method, we don’t

need to avoid certain values of m here
•In fact, we often set m to be a power

of 2 (say m = 2p)  easier computation
Ex : Suppose the word size of our

computer is w bits
If we further restrict A to be a
real of the form s/2w for some
integer s, then …

10

The Multiplication Method
Ex (cont):

Then to compute the desired hash
value, we can :
1. Obtain k s as a 2w-bit integer
2. Retain the last w bits of k s
3. Retain the first p bits of the result

of part 2

•In C : h = (k * s) >> (w – p) ;

11

Remark
•Knuth suggests

A = (5 –1)/2 = 0.6180339887…
is likely to work well

•Thus when w = 32, we try to choose
s = 2654435769

which is the integer closest to A 232

12

Remark
•Most hash functions assume the universe

of keys to be integers
•If keys are not integers, we may convert

them to integers
•Ex : Given a string pt, we may look at

it as a radix-128 integer
 pt(128) = 112 * 128 + 116 = 14452

•We shall assume all keys are integers

13

Hash Function for
Open Addressing

14

What is a good hash function ?
•In open addressing, our focus is to

create hash function of the form h(k, j)
such that the values h(k, 0), h(k, 1), …,
h(k, m-1) form a permutation of [0, m-1]

•We are going to describe three common
techniques for creating such functions
•Unfortunately, they don’t satisfy the

uniform hashing assumption …

15

Linear Probing
•In linear probing we need an auxiliary

hash function
h’: U  { 0, 1, …, m-1 }

•Based on h’, the desired hash function
is simply :

h(k, j) = (h’(k) + j) % m

•Any disadvantage of this scheme ?

16

Quadratic Probing
•In quadratic probing we also need an

auxiliary hash function
h’: U  { 0, 1, …, m-1 }

•Based on h’, the desired hash function is :
h(k, j) = (h’(k) + aj + bj2) % m

for some fixed a and b
•We need to choose a and b carefully 

otherwise cannot get a permutation

17

Double Hashing
•In double hashing we need two auxiliary

hash functions h1 and h2 where
h1 : U  { 0, 1, …, m-1 }

•The desired hash function is :
h(k, j) = (h1(k) + j h2(k)) % m

•We need h2(k) to be relatively prime to m
•Method 1: m = 2 power, h2(k) = odd
•Method 2: m = prime, 0 < h2(k) < m

18

Double Hashing
Ex (Method 1) :

m = 65536
h2(k) = (2 * k) + 1

Ex (Method 2) :
m = 701
h2(k) = 1 + (k % 700)

