CS2351 Data Structures

Lecture 18:
Hashing II

About this lecture

- The Hashing Problem
- Hash with Chaining
- Hash with Open Addressing
- Choosing a good Hash Function
** Universal Hash Function

Hash Function for Chaining

What is a good hash function?

- A good hash function should satisfy the simple uniform hashing assumption:

1. Each element of U is equally likely to be mapped into any of the m entries
2. Also, it is independent of where any other element is mapped to

- However, it is difficult to check, as we often don't know the key distribution

What is a good hash function?

- Sometimes we do know ...

Ex: Suppose keys are random real numbers drawn independently and uniformly from $[0,1)$
\rightarrow The hash function

$$
h(k)=\lfloor k m\rfloor
$$

satisfies the simple uniform hashing

What is a good hash function?

- In practice, we use heuristics to create hash functions
- May not satisfy simple uniform hashing, but performs well
- A general idea is to avoid the hash value to be dependent on the patterns that might exist in the key

The Division Method

- In division method we map key k into one of the m slots by:

$$
h(k)=k \% m
$$

$E x:$ if $m=12, k=100 \rightarrow h(k)=4$

- Should avoid $m=$ power of 2 (why?)
- A prime not close to power of 2 is usually a good choice
Ex: $n=2000$, we may choose $m=701$

The Multiplication Method

- In multiplication method we compute the hash value in 3 steps

1. Fix a constant A from $(0,1)$
2. Multiply the key k with A and take the fractional part
3. Multiply the fractional part with m, and take the floor of the result

- In summary: $h(k)=\lfloor m\{k A\}\rfloor$ where $\{x\}$ denote the fractional part of x

The Multiplication Method

- Unlike the division method, we don't need to avoid certain values of m here
- In fact, we often set m to be a power of $2\left(\right.$ say $\left.m=2^{p}\right) \rightarrow$ easier computation
Ex: Suppose the word size of our computer is w bits
If we further restrict A to be a real of the form $s / 2^{w}$ for some integer s, then ...

The Multiplication Method

Ex (cont):
Then to compute the desired hash value, we can:

1. Obtain $\mathrm{k} \times \mathrm{s}$ as a 2 w -bit integer
2. Retain the last w bits of $k \times s$
3. Retain the first p bits of the result of part 2

- In C: $h=(k * s) \gg(w-p) ;$

Remark

- Knuth suggests

$$
A=(\sqrt{5}-1) / 2=0.6180339887 \ldots
$$

is likely to work well

- Thus when $w=32$, we try to choose

$$
s=2654435769
$$

which is the integer closest to $A \times 2^{32}$

Remark

- Most hash functions assume the universe of keys to be integers
- If keys are not integers, we may convert them to integers
- Ex: Given a string pt, we may look at it as a radix-128 integer
$\rightarrow \mathrm{pt}_{(128)}=112 * 128+116=14452$
- We shall assume all keys are integers

Hash Function for Open Addressing

What is a good hash function?

- In open addressing, our focus is to create hash function of the form $h(k, j)$ such that the values $h(k, 0), h(k, 1), \ldots$, $h(k, m-1)$ form a permutation of [0, m-1]
- We are going to describe three common techniques for creating such functions
- Unfortunately, they don't satisfy the uniform hashing assumption ...

Linear Probing

- In linear probing we need an auxiliary hash function

$$
h^{\prime}: U \rightarrow\{0,1, \ldots, m-1\}
$$

- Based on h^{\prime}, the desired hash function is simply:

$$
h(k, j)=\left(h^{\prime}(k)+j\right) \% m
$$

- Any disadvantage of this scheme?

Quadratic Probing

- In quadratic probing we also need an auxiliary hash function

$$
h^{\prime}: U \rightarrow\{0,1, \ldots, m-1\}
$$

- Based on h^{\prime}, the desired hash function is:

$$
h(k, j)=\left(h^{\prime}(k)+a j+b j^{2}\right) \% m
$$

for some fixed a and b

- We need to choose a and b carefully \rightarrow otherwise cannot get a permutation

Double Hashing

- In double hashing we need two auxiliary hash functions h_{1} and h_{2} where

$$
h_{1}: U \rightarrow\{0,1, \ldots, m-1\}
$$

- The desired hash function is :

$$
h(k, j)=\left(h_{1}(k)+j h_{2}(k)\right) \% m
$$

- We need $h_{2}(k)$ to be relatively prime to m
- Method 1: $m=2$ power, $h_{2}(k)=$ odd
- Method 2: $m=$ prime, $0<h_{2}(k)<m$

Double Hashing

Ex (Method 1) :

$$
\begin{aligned}
& m=65536 \\
& h_{2}(k)=(2 * k)+1
\end{aligned}
$$

Ex (Method 2) :

$$
\begin{aligned}
& m=701 \\
& h_{2}(k)=1+(k \% 700)
\end{aligned}
$$

