CS23561
Data Structures

Lecture 18:
Hashing IT



About this lecture

» Choosing a good Hash Function



Hash Function for Chaining



What is a good hash function ?

* A good hash function should satisfy the
simple uniform hashing assumption :

1. Each element of U is equally likely to
be mapped into any of the m entries

2. Also, it is independent of where any
other element is mapped to

« However, it is difficult to check, as we
often don't know the key distribution



What is a good hash function ?

« Sometimes we do know ...

Ex : Suppose keys are random real
numbers drawn independently and
uniformly from [0,1)

=>» The hash function
h(k) = L km |
satisfies the simple uniform hashing

5



What is a good hash function ?

» In practice, we use heuristics to create
hash functions

* May not satisfy simple uniform
hashing, but performs well

* A general idea is to avoid the hash value
to be dependent on the patterns that
might exist in the key



The Division Method

* In division method we map key k into
one of the m slots by :

h(k) = k % m
Ex: if m=12, k=100 9 h(k) = 4

 Should avoid m = power of 2 (why?)

* A prime not close to power of 2 is
usually a good choice

Ex : n=2000, we may choose m = 701



The Multiplication Method

* In multiplication method we compute
the hash value in 3 steps

1. Fix a constant A from (0,1)

2. Multiply the key k with A and take
the fractional part

3. Multiply the fractional part with m,
and take the floor of the result
» Insummary : h(k)=L m{ kA }

where { x } denote the fractional part of x
8



The Multiplication Method

* Unlike the division method, we don't
need to avoid certain values of m here

* In fact, we often set m to be a power
of 2 (say m = 2P) =» easier computation
Ex : Suppose the word size of our
computer is w bits

If we further restrict A to be a
real of the form s/2% for some
intfeger s, then ...



The Multiplication Method

Ex (cont):
Then to compute the desired hash
value, we can :
1. Obtain k x s as a 2w-bit integer
2. Retain the last w bits of k x s

3. Retain the first p bits of the result
of part 2

- InC: h=(k*s) > (w-p) ;

10



Remark

» Knuth suggests
A=(V5-1)/2=0.6180339887...

is likely to work well

* Thus whenw = 32, we try to choose
s = 2654435769
which is the integer closest o A x 232

11



Remark

Most hash functions assume the universe
of keys to be integers

If keys are not integers, we may convert
them to integers

Ex : Given a string pt , we may look at
it as a radix-128 integer

> Dt 12 = 112 * 128 + 116 = 14452

We shall assume all keys are integers

12



Hash Function for
Open Addressing

13



What is a good hash function ?

 In open addressing, our focus is to
create hash function of the form h(k, j)

such that the values h(k, 0), h(k, 1), ...,
h(k, m-1) form a permutation of [0, m-1]

» We are going to describe three common
techniques for creating such functions

» Unfortunately, they don't satisfy the
uniform hashing assumption ...

14



Linear Probing

* In linear probing we need an auxiliary
hash function

h: U>{0,1, .., m-1}

e Based on h', the desired hash function
IS simply :
h(k, §) = (W()+j) % m

 Any disadvantage of this scheme ?

15



Quadratic Probing

* In quadratic probing we also need an
auxiliary hash function

h: U>{0,1, .., m-1}
* Based on h', the desired hash function is :
h(k, ) = (h(K)+aj+bj?) % m

for some fixed a and b

» We need to choose a and b carefully =
otherwise cannot get a permutation

16



Double Hashing

* In double hashing we need two auxiliary
hash functions h; and h, where

h,: U>{0,1, ., 6 m-1}
e The desired hash function is :
h(k, j) = (hyK) +jhy(k)) 7% m

* We need h,(k) to be relatively prime to m
* Method 1: m = 2 power, h,(k) = odd
* Method 2: m = prime, O < h,(k) < m

17



Double Hashing

Ex (Method 1) :
m = 65536
ho(k) = (2 k) + 1

Ex (Method 2):
m = 701
h,(k) =1+ (k % 700)

18



