CS2351 Data Structures

Lecture 14: AVL Tree

About this lecture

- A general binary search tree (BST) does not have good worst-case performance since its height can be $\Theta(n)$
- In this lecture, we discuss a balanced BST called AVL tree, whose height = O(log n)
 - → Query is done in O(log n) time
 - More involved updates due to balancing
 - invented by Adelson-Velskii and Landis

AVL Tree

- Let x be a node.
- Let L and R be its left and right subtrees.
- We define balance factor of x to be :
 bf(x) = Height of L Height of R
- An AVL tree is a BST with the property :

Each node has a balance factor of either 1, 0, or -1

Example of AVL Tree

Are these AVL trees?

Example of AVL Tree

Are these AVL trees?

Height of an AVL Tree

- Let h be the node-height of an AVL tree.
- Then we have :

Theorem : $h \le 1.4405 \log n + O(1)$

The idea of the proof is that :
 If an AVL tree has node-height h, then it
 must have a lot of nodes so that it cannot
 be too "skewed"

Proof

 \cdot Let $N_{\rm h}$ be the number of nodes in the smallest AVL tree with height h

→
$$N_1 = 1$$
, $N_2 = 2$

→
$$N_h = N_{h-1} + N_{h-2} + 1$$
 (why?)

• Indeed, we can show that (how?) $N_h = F_{h+1} - 1$ where $F_k = k^{\text{th}}$ Fibonacci number ($F_0 = F_1 = 1$)

Proof (cont)

- It is known that for Fibonacci number F_k : $F_k\approx \Theta(\phi^k)$ where ϕ = (1+ $\sqrt{5})/2$ = 1.61803...
- Thus, if n is the number of nodes in an AVL tree with node-height h $n \ge N_h \ge c \times \varphi^{h+1}$ [c is a constant] $\rightarrow h \le \log_{\varphi} n + O(1) \le 1.4405 \log n + O(1)$

Query Performance

Corollary :

The queries minimum, maximum, search, predecessor, and successor can each be performed in O(log n) time in an AVL tree

Updates in an AVL Tree

Updates in an AVL Tree

- Updates are performed in the same way as in a general BST, except that we need balancing if the tree shape is too "skewed"
- The balancing is based on a powerful operation called "rotation"
 - also used in other balanced BST, such as Red-Black tree or Splay tree

Observation : After rotation, the inorder traversal ordering remains unchanged.

Remark

- If one subtree is too tall, we may use some rotations to balance the tree
- Ex : How to balance the following cases ?

In fact, we can always transform one BST to another just by rotations (how to show?)

Implementation in C

• We can define R_rotate as follows using Transplant from the previous lecture :

```
// Assume *x has left child
Node * R_rotate( Node *x ) {
   y = x->left ;
   Transplant( y, y->right );
   Transplant( x, y );
   y->right = x ;
   x->parent = y ;
}
```

Implementation in C

 Similarly, we can define L_rotate, and then LR_rotate or RL_rotate :

```
// Assume *x has left child
// and *(x->left) has right child
Node * LR_rotate( Node *x ) {
  L_rotate( x->left ) ;
  R_rotate( x );
}
```

Insertion in an AVL Tree

Insertion

 Insertion is the same way as before, except that after insertion, the balance factor of some nodes (along the insertion path) may increase

Insertion

- Consequently, we need to balance these nodes so that AVL property is maintained
- This is done by a bottom-up fashion

Case 1 (No Height Change)

- If no height change in the subtree
 - → balance factor of a node (and its ancestors) is not changed → done !

- If height of the subtree increases (by 1)
 - → If balance factor was 0 originally
 - Update balance factor and continue to balance the ancestors

- If height of the subtree increases (by 1)
 If other subtree was taller originally
 - Set balance factor to 0, and done !

- If height of the subtree increases (by 1)
 - → If other subtree was shorter originally
 - → Perform rotation

• There are two subcases for Case 2.3 :

• There are two subcases for Case 2.3 :

What is the resulting tree?

• First Rotation :

Second subcase

Second Rotation :

Second subcase

• What if the child node on the insertion path has balance factor 0?

Third subcase ?

We can prove that using our insertion scheme, if child node has balance factor 0, height cannot increase

- After perform rotations in either subcases, the node becomes balanced
 - → No change is needed for the ancestor
 - → Done !

Implementation in C

Recall the Insert function in the BST :

```
void Insert( Node *x, Node *z ) {
    if ( x->key < z->key ) {
        if ( x->right ) Insert( x->right, z );
        else x->right = z ;
     }
    else ...
}
```

• We now modify it to handle balancing ...

Implementation in C

```
void Insert( Node *x, Node *z ) {
  if (x->key < z->key)
    if (x->right) Insert(x->right, z);
   else { x->right = z ; z->bf = 0 ;
           height_inc = TRUE ; }
    if ( height_inc )
     /* Handle Cases 2.1, 2.2 & 2.3 */ }
  }
  else ...
```

height_inc is a global variable to indicate if height of subtree of x has increased during insertion

Handling Cases 2.1 and 2.2

```
/* Case 2.1 */
if (x - bf == 0)
  x - bf = -1;
/* Case 2.2 */
else if (x-bf == 1)
{ x->bf = 0 ; height_inc = FALSE ; }
/* Case 2.3 */
else ...
```

Handling Case 2.3

```
/* Case 2.3 */
else {
  /* First Subcase */
  if ( x->right->bf == -1 ) {
      L_rotate( x );
      x \rightarrow bf = x \rightarrow parent \rightarrow bf = 0;
      height_inc = FALSE ;
  }
  /* Second Subcase */ else ...
} ...
```

Handling Case 2.3

```
/* Second Subcase */
else if ( x->right->bf == 1 ) {
  int b = x->right->left->bf ;
  LR_rotate(x); x-parent-bf = 0;
  if (b == 0)
  \{ x - bf = x - parent - right - bf = 0; \}
  else if (b == 1)
  \{ x - bf = 0; x - parent - right - bf = -1; \}
  else if (b == -1)
  \{ x - bf = 1; x - parent - right - bf = 0; \}
  height_inc = FALSE ;
```

}

Deletion in an AVL Tree

Deletion

 Deletion is the same way as before, except that after deletion, balance factor of the ancestors of the node "actually" deleted (ex: successor) may decrease

Deletion

- Consequently, we need to balance these nodes so that AVL property is maintained
- Again, this is done by a bottom-up fashion

Case 1 (No Height Change)

- If no height change in the subtree
 - → balance factor of a node (and its ancestors) is not changed → done !

Case 2.1 (Height Decreases)

- If height of the subtree decreases (by 1)
 - → If balance factor was 0 originally
 - Update balance factor and done !
 (handle differently from insertion)

Case 2.2 (Height Decreases)

- If height of the subtree decreases (by 1)
 - → If other subtree was taller originally
 - → Rotations, set balance factor to 0
 - Continue to balance ancestors (why?)

- If height of the subtree decreases (by 1)
 - → If other subtree was shorter originally
 - Set balance factor to 0
 - Continue to balance ancestors

Update Performance

Corollary :

Insertion or deletion can each be performed in O(log n) time in an AVL tree

Remarks : Each insertion requires at most 2 rotations, but may update O(log n) nodes Q: How about deletion ?

of Rotations in Deletion

In the worst case, we need to rotate in each level