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CS2351
Data Structures

Lecture 14:
AVL Tree
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About this lecture
•A general binary search tree (BST) does

not have good worst-case performance
since its height can be (n)

•In this lecture, we discuss a balanced BST
called AVL tree, whose height = O(log n)
 Query is done in O( log n ) time
•More involved updates due to balancing
• invented by Adelson-Velskii and Landis
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AVL Tree

•Let x be a node.
•Let L and R be its left and right subtrees.
•We define balance factor of x to be :

bf(x) = Height of L –Height of R

•An AVL tree is a BST with the property :

Each node has a balance factor
of either 1, 0, or –1
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Example of AVL Tree
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Height of an AVL Tree

•Let h be the node-height of an AVL tree.
•Then we have :

Theorem : h 1.4405 log n + O(1)

•The idea of the proof is that :
If an AVL tree has node-height h, then it
must have a lot of nodes so that it cannot
be too “skewed”
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Proof

•Let Nh be the number of nodes in the
smallest AVL tree with height h
 N1 = 1, N2 = 2
 Nh = Nh–1 + Nh–2 + 1 (why?)

•Indeed, we can show that (how?)
Nh = Fh+1 –1

where Fk = kth Fibonacci number (F0 = F1 = 1)
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Proof (cont)

•It is known that for Fibonacci number Fk :
Fk (k)

where = (1+5)/2 = 1.61803…

•Thus, if n is the number of nodes in an
AVL tree with node-height h

n Nh c h+1 [c is a constant]

 h logn + O(1) 1.4405 log n + O(1)
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Query Performance

Corollary :
The queries minimum, maximum, search,
predecessor, and successor can each be
performed in O(log n) time in an AVL tree
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Updates in an AVL Tree
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Updates in an AVL Tree
•Updates are performed in the same way as

in a general BST, except that we need
balancing if the tree shape is too “skewed”

•The balancing is based on a powerful
operation called “rotation”
•also used in other balanced BST, such

as Red-Black tree or Splay tree
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Rotation

A B

C A

B C

right rotation

left rotation

Observation : After rotation, the inorder
traversal ordering remains unchanged.
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Remark
•If one subtree is too tall, we may use some

rotations to balance the tree
•Ex : How to balance the following cases ?

8
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3
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6

In fact, we can always transform one BST to
another just by rotations (how to show?)
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•We can define R_rotate as follows using
Transplant from the previous lecture :

Implementation in C

// Assume *x has left child
Node * R_rotate( Node *x ) {

y = x->left ;
Transplant( y, y->right );
Transplant( x, y );
y->right = x ;
x->parent = y ;

}
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•Similarly, we can define L_rotate, and
then LR_rotate or RL_rotate :

Implementation in C

// Assume *x has left child
// and *(x->left) has right child
Node * LR_rotate( Node *x ) {

L_rotate( x->left ) ;
R_rotate( x );

}
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Insertion in an AVL Tree
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Insertion
•Insertion is the same way as before,

except that after insertion, the balance
factor of some nodes (along the insertion
path) may increase

Insertion path
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Insertion
•Consequently, we need to balance these

nodes so that AVL property is maintained
•This is done by a bottom-up fashion

Insertion path
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Case 1 (No Height Change)
•If no height change in the subtree
 balance factor of a node (and its

ancestors) is not changed  done !

Height not
changed
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Case 2.1 (Height Increases)
•If height of the subtree increases (by 1)
 If balance factor was 0 originally
 Update balance factor and continue

to balance the ancestors

Height
increases

0

Height
increases

-1
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Case 2.2 (Height Increases)
•If height of the subtree increases (by 1)
 If other subtree was taller originally
 Set balance factor to 0, and done !

Height
increases

+1 0
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Case 2.3 (Height Increases)
•If height of the subtree increases (by 1)
 If other subtree was shorter originally
 Perform rotation

Height
increases

-1  -2
Perform
rotation



23

Case 2.3 (Height Increases)
•There are two subcases for Case 2.3 :

-2

-1
one rotation 0

0

First subcase
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Case 2.3 (Height Increases)
•There are two subcases for Case 2.3 :

-2

+1
two rotations

Second subcase

What is the
resulting tree ?
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Case 2.3 (Height Increases)
•First Rotation :

-2

+1 first
rotation

Second subcase
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Case 2.3 (Height Increases)
•Second Rotation :

second
rotation

Second subcase

-2

?

b’
C

B

0

b’b” C

B
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Case 2.3 (Height Increases)
•What if the child node on the insertion

path has balance factor 0 ?
-2

0 Third subcase ?

We can prove that using our
insertion scheme, if child
node has balance factor 0,
height cannot increase
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Case 2.3 (Height Increases)

•After perform rotations in either
subcases, the node becomes balanced
 No change is needed for the ancestor
 Done !
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Implementation in C

void Insert( Node *x, Node *z ) {
if ( x->key < z->key ) {

if ( x->right ) Insert( x->right, z );
else x->right = z ;

}
else ...

}

•Recall the Insert function in the BST :

•We now modify it to handle balancing …
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void Insert( Node *x, Node *z ) {
if ( x->key < z->key ) {

if ( x->right ) Insert( x->right, z );
else { x->right = z ; z->bf = 0 ;

height_inc = TRUE ; }
if ( height_inc )
{ /* Handle Cases 2.1, 2.2 & 2.3 */ }

}
else ...

}

height_inc is a global variable to indicate if height of
subtree of x has increased during insertion

Implementation in C
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/* Case 2.1 */
if ( x->bf == 0 )

x->bf = -1 ;

/* Case 2.2 */
else if ( x->bf == 1 )
{ x->bf = 0 ; height_inc = FALSE ; }

/* Case 2.3 */
else ...

Handling Cases 2.1 and 2.2
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/* Case 2.3 */
else {

/* First Subcase */
if ( x->right->bf == -1 ) {

L_rotate( x );
x->bf = x->parent->bf = 0 ;
height_inc = FALSE ;

}
/* Second Subcase */ else ...

} ...

Handling Case 2.3
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/* Second Subcase */
else if ( x->right->bf == 1 ) {

int b = x->right->left->bf ;
LR_rotate( x ); x->parent->bf = 0;
if ( b == 0 )
{ x->bf = x->parent->right->bf = 0; }
else if ( b == 1 )
{ x->bf = 0; x->parent->right->bf = -1; }
else if ( b == -1 )
{ x->bf = 1; x->parent->right->bf = 0; }
height_inc = FALSE ;

}

Handling Case 2.3
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Deletion in an AVL Tree
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Deletion
•Deletion is the same way as before,

except that after deletion, balance factor
of the ancestors of the node “actually”
deleted (ex: successor) may decrease
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Deletion
•Consequently, we need to balance these

nodes so that AVL property is maintained
•Again, this is done by a bottom-up fashion
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Case 1 (No Height Change)
•If no height change in the subtree
 balance factor of a node (and its

ancestors) is not changed  done !

Height not
changed
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Case 2.1 (Height Decreases)
•If height of the subtree decreases (by 1)
 If balance factor was 0 originally
 Update balance factor and done !

( handle differently from insertion )

Height
decreases

0 +1

Height not
changed
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Case 2.2 (Height Decreases)
•If height of the subtree decreases (by 1)
 If other subtree was taller originally
 Rotations, set balance factor to 0
 Continue to balance ancestors (why?)

+1

Height
decreases

Perform one or
two rotations 0

Height
decreases
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Case 2.3 (Height Decreases)
•If height of the subtree decreases (by 1)
 If other subtree was shorter originally
 Set balance factor to 0
 Continue to balance ancestors

-1

Height
decreases

0

Height
decreases
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Update Performance

Corollary :
Insertion or deletion can each be
performed in O(log n) time in an AVL tree

Remarks : Each insertion requires at most 2
rotations, but may update O(log n) nodes

Q: How about deletion ?
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# of Rotations in Deletion

+1

+1

+1

In the worst case, we need
to rotate in each level

 O( log n ) rotations !


