CS2351 Data Structures

Lecture 14:
AVL Tree

About this lecture

- A general binary search tree (BST) does not have good worst-case performance since its height can be $\Theta(n)$
- In this lecture, we discuss a balanced BST called AVL tree, whose height $=O(\log n)$
\rightarrow Query is done in $O(\log n)$ time
- More involved updates due to balancing
- invented by Adelson-Velskii and Landis

AVL Tree

- Let x be a node.
- Let L and R be its left and right subtrees.
- We define balance factor of x to be: $b f(x)=$ Height of L - Height of R
- An AVL tree is a BST with the property :

Each node has a balance factor of either 1,0 , or -1

Example of AVL Tree

Are these AVL trees?

Example of AVL Tree

Are these AVL trees?

Height of an AVL Tree

- Let h be the node-height of an AVL tree.
- Then we have :

Theorem: $h \leq 1.4405 \log n+O(1)$

- The idea of the proof is that:

If an AVL tree has node-height h, then it must have a lot of nodes so that it cannot be too "skewed"

Proof

- Let N_{h} be the number of nodes in the smallest AVL tree with height h
$\rightarrow N_{1}=1, N_{2}=2$
$\rightarrow N_{h}=N_{h-1}+N_{h-2}+1$ (why?)
- Indeed, we can show that (how?)

$$
N_{h}=F_{h+1}-1
$$

where $F_{k}=k^{\text {th }}$ Fibonacci number $\left(F_{0}=F_{1}=1\right)$

Proof (cont)

- It is known that for Fibonacci number F_{k} :

$$
\mathrm{F}_{\mathrm{k}} \approx \Theta\left(\varphi^{\mathrm{k}}\right)
$$

where $\varphi=(1+\sqrt{ } 5) / 2=1.61803 .$.

- Thus, if n is the number of nodes in an AVL tree with node-height h

$$
\begin{aligned}
n & \geq N_{h} \geq c \times \varphi^{h+1} \quad[c \text { is a constant }] \\
\Rightarrow h \leq \log _{\varphi} n & +O(1) \leq 1.4405 \log n+O(1)
\end{aligned}
$$

Query Performance

Corollary :

The queries minimum, maximum, search, predecessor, and successor can each be performed in $O(\log n)$ time in an AVL tree

Updates in an AVL Tree

Updates in an AVL Tree

- Updates are performed in the same way as in a general BST, except that we need balancing if the tree shape is too "skewed"
- The balancing is based on a powerful operation called "rotation"
- also used in other balanced BST, such as Red-Black tree or Splay tree

Rotation

Observation: After rotation, the inorder traversal ordering remains unchanged.

Remark

- If one subtree is too tall, we may use some rotations to balance the tree
- Ex: How to balance the following cases?

In fact, we can always transform one BST to another just by rotations (how to show?)

Implementation in C

- We can define R_rotate as follows using Transplant from the previous lecture :

```
// Assume *x has left child
Node * R_rotate( Node *x ) {
    y = x->left ;
    Transplant( Y, y->right );
    Transplant( x, y );
    y->right = x ;
    x->parent = y ;
}
```


Implementation in C

- Similarly, we can define L_rotate, and then LR_rotate or RL_rotate:

```
// Assume *x has left child
// and *(x->left) has right child
Node * LR_rotate( Node *x ) {
    I_rotate( x->left ) ;
    R_rotate( x );
}
```

Insertion in an AVL Tree

Insertion

- Insertion is the same way as before, except that after insertion, the balance factor of some nodes (along the insertion path) may increase

Insertion

- Consequently, we need to balance these nodes so that AVL property is maintained
- This is done by a bottom-up fashion

Case 1 (No Height Change)

- If no height change in the subtree \rightarrow balance factor of a node (and its ancestors) is not changed \rightarrow done !

Height not changed

Case 2.1 (Height Increases)

- If height of the subtree increases (by 1)
\rightarrow If balance factor was 0 originally
\rightarrow Update balance factor and continue to balance the ancestors

Height increases

Case 2.2 (Height Increases)

- If height of the subtree increases (by 1)
\rightarrow If other subtree was taller originally
\rightarrow Set balance factor to 0 , and done !

Height increases

Case 2.3 (Height Increases)

- If height of the subtree increases (by 1)
\rightarrow If other subtree was shorter originally \rightarrow Perform rotation

Case 2.3 (Height Increases)

- There are two subcases for Case 2.3 :

First subcase

Case 2.3 (Height Increases)

- There are two subcases for Case 2.3 :

> What is the resulting tree?

Second subcase

Case 2.3 (Height Increases)

- First Rotation :

Second subcase

Case 2.3 (Height Increases)

- Second Rotation :

Second subcase

Case 2.3 (Height Increases)

- What if the child node on the insertion path has balance factor 0 ?

Third subcase?
We can prove that using our insertion scheme, if child node has balance factor 0 , height cannot increase

Case 2.3 (Height Increases)

- After perform rotations in either subcases, the node becomes balanced
\rightarrow No change is needed for the ancestor \rightarrow Done!

Implementation in C

- Recall the Insert function in the BST:

```
void Insert( Node *x, Node *z ) {
    if ( x->key < z->key ) {
        if ( x->right ) Insert( x->right, z );
        else x->right = z ;
    }
    else ...
}
```

- We now modify it to handle balancing ...

Implementation in C

```
void Insert( Node *x, Node *z ) {
    if ( x->key < z->key ) {
    if ( x->right ) Insert( x->right, z );
    else { x->right = z ; z->bf = 0 ;
                        height_inc = TRUE ; }
            if ( height_inc )
            { /* Handle Cases 2.1, 2.2 & 2.3 */ }
    }
    else
}
```

height_inc is a global variable to indicate if height of subtree of x has increased during insertion

Handling Cases 2.1 and 2.2

/* Case 2.1 */
if ($x->b f=0$)

$$
x->b f=-1 ;
$$

/* Case 2.2 */
else if (x->bf == 1)
\{ $\mathrm{x}->\mathrm{bf}=0$; height_inc $=$ FALSE ; \}
/* Case 2.3 */
else

Handling Case 2.3

```
/* Case 2.3 */
else {
    /* First Subcase */
    if ( x->right->bf == -1 ) {
            L_rotate( x );
            x->bf = x->parent->bf = 0 ;
                height_inc = FALSE ;
    }
    /* Second Subcase */ else ...
}
```


Handling Case 2.3

/* Second Subcase */
else if (x->right->bf == 1) \{
int $b=x->r i g h t->l e f t->b f$;
LR_rotate (x); x->parent->bf = 0;
if (b == 0)
\{ x->bf = x->parent->right->bf = 0; \}
else if (b == 1)
\{ x->bf = 0; x->parent->right->bf = -1; \}
else if (b == -1)
\{ x->bf = 1; x->parent->right->bf = 0; \}
height_inc = FALSE ;
\}

Deletion in an AVL Tree

Deletion

- Deletion is the same way as before, except that after deletion, balance factor of the ancestors of the node "actually" deleted (ex: successor) may decrease

Deletion

- Consequently, we need to balance these nodes so that AVL property is maintained
- Again, this is done by a bottom-up fashion

Case 1 (No Height Change)

- If no height change in the subtree \rightarrow balance factor of a node (and its ancestors) is not changed \rightarrow done!

Case 2.1 (Height Decreases)

- If height of the subtree decreases (by 1)
\rightarrow If balance factor was 0 originally \rightarrow Update balance factor and done! (handle differently from insertion)

Case 2.2 (Height Decreases)

- If height of the subtree decreases (by 1)
\rightarrow If other subtree was taller originally
\rightarrow Rotations, set balance factor to 0
\rightarrow Continue to balance ancestors (why?)

Case 2.3 (Height Decreases)

- If height of the subtree decreases (by 1)
\rightarrow If other subtree was shorter originally
\rightarrow Set balance factor to 0
\rightarrow Continue to balance ancestors

Update Performance

Corollary :

Insertion or deletion can each be performed in $O(\log n)$ time in an AVL tree

Remarks: Each insertion requires at most 2 rotations, but may update $O(\log n$) nodes
Q: How about deletion?

\# of Rotations in Deletion

In the worst case, we need to rotate in each level
$\rightarrow O(\log n)$ rotations !

