
1

CS2351
Data Structures

Lecture 14:
AVL Tree

2

About this lecture
•A general binary search tree (BST) does

not have good worst-case performance
since its height can be (n)

•In this lecture, we discuss a balanced BST
called AVL tree, whose height = O(log n)
 Query is done in O(log n) time
•More involved updates due to balancing
• invented by Adelson-Velskii and Landis

3

AVL Tree

•Let x be a node.
•Let L and R be its left and right subtrees.
•We define balance factor of x to be :

bf(x) = Height of L –Height of R

•An AVL tree is a BST with the property :

Each node has a balance factor
of either 1, 0, or –1

4

Example of AVL Tree

8

23

48

31

5

3

Are these AVL trees?

8

5

3 6

–1

+1 –2

+1

0

0

+2

0

0 0

5

Example of AVL Tree

8

23

48

5

3

Are these AVL trees?

8

235

3 6

0

+1 –1

00

+1

0

0 0

0

6

Height of an AVL Tree

•Let h be the node-height of an AVL tree.
•Then we have :

Theorem : h 1.4405 log n + O(1)

•The idea of the proof is that :
If an AVL tree has node-height h, then it
must have a lot of nodes so that it cannot
be too “skewed”

7

Proof

•Let Nh be the number of nodes in the
smallest AVL tree with height h
 N1 = 1, N2 = 2
 Nh = Nh–1 + Nh–2 + 1 (why?)

•Indeed, we can show that (how?)
Nh = Fh+1 –1

where Fk = kth Fibonacci number (F0 = F1 = 1)

8

Proof (cont)

•It is known that for Fibonacci number Fk :
Fk (k)

where = (1+5)/2 = 1.61803…

•Thus, if n is the number of nodes in an
AVL tree with node-height h

n Nh c h+1 [c is a constant]

 h logn + O(1) 1.4405 log n + O(1)

9

Query Performance

Corollary :
The queries minimum, maximum, search,
predecessor, and successor can each be
performed in O(log n) time in an AVL tree

10

Updates in an AVL Tree

11

Updates in an AVL Tree
•Updates are performed in the same way as

in a general BST, except that we need
balancing if the tree shape is too “skewed”

•The balancing is based on a powerful
operation called “rotation”
•also used in other balanced BST, such

as Red-Black tree or Splay tree

12

Rotation

A B

C A

B C

right rotation

left rotation

Observation : After rotation, the inorder
traversal ordering remains unchanged.

13

Remark
•If one subtree is too tall, we may use some

rotations to balance the tree
•Ex : How to balance the following cases ?

8

5

3

8

5

6

In fact, we can always transform one BST to
another just by rotations (how to show?)

14

•We can define R_rotate as follows using
Transplant from the previous lecture :

Implementation in C

// Assume *x has left child
Node * R_rotate(Node *x) {

y = x->left ;
Transplant(y, y->right);
Transplant(x, y);
y->right = x ;
x->parent = y ;

}

15

•Similarly, we can define L_rotate, and
then LR_rotate or RL_rotate :

Implementation in C

// Assume *x has left child
// and *(x->left) has right child
Node * LR_rotate(Node *x) {

L_rotate(x->left) ;
R_rotate(x);

}

16

Insertion in an AVL Tree

17

Insertion
•Insertion is the same way as before,

except that after insertion, the balance
factor of some nodes (along the insertion
path) may increase

Insertion path

18

Insertion
•Consequently, we need to balance these

nodes so that AVL property is maintained
•This is done by a bottom-up fashion

Insertion path

19

Case 1 (No Height Change)
•If no height change in the subtree
 balance factor of a node (and its

ancestors) is not changed  done !

Height not
changed

20

Case 2.1 (Height Increases)
•If height of the subtree increases (by 1)
 If balance factor was 0 originally
 Update balance factor and continue

to balance the ancestors

Height
increases

0

Height
increases

-1

21

Case 2.2 (Height Increases)
•If height of the subtree increases (by 1)
 If other subtree was taller originally
 Set balance factor to 0, and done !

Height
increases

+1 0

22

Case 2.3 (Height Increases)
•If height of the subtree increases (by 1)
 If other subtree was shorter originally
 Perform rotation

Height
increases

-1  -2
Perform
rotation

23

Case 2.3 (Height Increases)
•There are two subcases for Case 2.3 :

-2

-1
one rotation 0

0

First subcase

24

Case 2.3 (Height Increases)
•There are two subcases for Case 2.3 :

-2

+1
two rotations

Second subcase

What is the
resulting tree ?

25

Case 2.3 (Height Increases)
•First Rotation :

-2

+1 first
rotation

Second subcase

b
C

B

-2

?

b’
C

B

26

Case 2.3 (Height Increases)
•Second Rotation :

second
rotation

Second subcase

-2

?

b’
C

B

0

b’b” C

B

27

Case 2.3 (Height Increases)
•What if the child node on the insertion

path has balance factor 0 ?
-2

0 Third subcase ?

We can prove that using our
insertion scheme, if child
node has balance factor 0,
height cannot increase

28

Case 2.3 (Height Increases)

•After perform rotations in either
subcases, the node becomes balanced
 No change is needed for the ancestor
 Done !

29

Implementation in C

void Insert(Node *x, Node *z) {
if (x->key < z->key) {

if (x->right) Insert(x->right, z);
else x->right = z ;

}
else ...

}

•Recall the Insert function in the BST :

•We now modify it to handle balancing …

30

void Insert(Node *x, Node *z) {
if (x->key < z->key) {

if (x->right) Insert(x->right, z);
else { x->right = z ; z->bf = 0 ;

height_inc = TRUE ; }
if (height_inc)
{ /* Handle Cases 2.1, 2.2 & 2.3 */ }

}
else ...

}

height_inc is a global variable to indicate if height of
subtree of x has increased during insertion

Implementation in C

31

/* Case 2.1 */
if (x->bf == 0)

x->bf = -1 ;

/* Case 2.2 */
else if (x->bf == 1)
{ x->bf = 0 ; height_inc = FALSE ; }

/* Case 2.3 */
else ...

Handling Cases 2.1 and 2.2

32

/* Case 2.3 */
else {

/* First Subcase */
if (x->right->bf == -1) {

L_rotate(x);
x->bf = x->parent->bf = 0 ;
height_inc = FALSE ;

}
/* Second Subcase */ else ...

} ...

Handling Case 2.3

33

/* Second Subcase */
else if (x->right->bf == 1) {

int b = x->right->left->bf ;
LR_rotate(x); x->parent->bf = 0;
if (b == 0)
{ x->bf = x->parent->right->bf = 0; }
else if (b == 1)
{ x->bf = 0; x->parent->right->bf = -1; }
else if (b == -1)
{ x->bf = 1; x->parent->right->bf = 0; }
height_inc = FALSE ;

}

Handling Case 2.3

34

Deletion in an AVL Tree

35

Deletion
•Deletion is the same way as before,

except that after deletion, balance factor
of the ancestors of the node “actually”
deleted (ex: successor) may decrease

36

Deletion
•Consequently, we need to balance these

nodes so that AVL property is maintained
•Again, this is done by a bottom-up fashion

37

Case 1 (No Height Change)
•If no height change in the subtree
 balance factor of a node (and its

ancestors) is not changed  done !

Height not
changed

38

Case 2.1 (Height Decreases)
•If height of the subtree decreases (by 1)
 If balance factor was 0 originally
 Update balance factor and done !

(handle differently from insertion)

Height
decreases

0 +1

Height not
changed

39

Case 2.2 (Height Decreases)
•If height of the subtree decreases (by 1)
 If other subtree was taller originally
 Rotations, set balance factor to 0
 Continue to balance ancestors (why?)

+1

Height
decreases

Perform one or
two rotations 0

Height
decreases

40

Case 2.3 (Height Decreases)
•If height of the subtree decreases (by 1)
 If other subtree was shorter originally
 Set balance factor to 0
 Continue to balance ancestors

-1

Height
decreases

0

Height
decreases

41

Update Performance

Corollary :
Insertion or deletion can each be
performed in O(log n) time in an AVL tree

Remarks : Each insertion requires at most 2
rotations, but may update O(log n) nodes

Q: How about deletion ?

42

of Rotations in Deletion

+1

+1

+1

In the worst case, we need
to rotate in each level

 O(log n) rotations !

