
1

CS2351
Data Structures

Lecture 13:
Binary Search Tree

2

About this lecture
•A binary search tree (BST) is a binary

tree that stores a set of items, and each
item has a distinct key chosen from an
ordered set
•allows various queries and updates

•In this lecture, we discuss how the BST
supports the queries and the updates

3

Binary Search Tree (BST)

•Each node in a BST has a distinct key
•The keys in the nodes satisfies the

following BST property :

Let x be a node in a BST.
Let y and z be nodes in the left and
right subtrees of x, respectively.
Then we have y.key x.key z.key

4

Example of BST

8

23

48

21

5

3 6

Is this a BST?

5

Example of BST

8

23

48

31

5

3 6

What happens if we perform
inorder traversal in a BST?

6

Queries in a BST

7

Queries in a BST

•A BST supports the following queries:
1. Finding nodes with min or max keys
2. Given a value k, search for a node that

contains k as the key
3. Given a node x, return the successor

or the predecessor of x
successor: node with key just larger than x.key
predecessor: node with key just smaller than x.key

8

Successor and Predecessor

8

23

48

31

5

3 6

Successor(x) = node with key 8

Predecessor(y) = node with key 31

x y

9

Finding Min or Max

•Where is the node with min key ?
 The leftmost node in BST

•Where is the node with max key ?
 The rightmost node in BST

•In general, let x be a node in the BST
Q: Where is the node with min/max key

in the subtree rooted at x ?

10

•We define a function Min, which returns a
pointer to the min key node in subtree of x

Implementation in C

Node * Min(Node *x) {
while (x->left != NULL)

x = x->left ;
return x ;

}

•Then desired min is equal to Min(r), where
r = a pointer to the root of BST

11

•We define a function Max, which returns a
pointer to the max key node in subtree of x

Implementation in C

Node * Max(Node *x) {
while (x->right != NULL)

x = x->right ;
return x ;

}

•Then desired max is equal to Max(r)

12

Searching a Key
•Let k be the key to be searched. Suppose

k root.key. What can we conclude ?
•In fact, searching a BST is very similar to

doing binary search in a sorted array :

1. If k is equal to root.key, done !
2. Else if k root.key, recursively search

left subtree of root
3. Else, recursively search right subtree

13

Example of Searching a BST

8

23

48

31

5

3 6

Search for key 30

not found

14

•We define a function Search :

Implementation in C

Node * Search(Node *x, int k) {
if (x == NULL) return NULL ;
if (x->key == k) return x ;
if (x->key > k)

return Search(x->left, k);
return Search(x->right, k) ;

}

•Then, desired node = Search(r, k) , where
r = pointer to root of BST

15

Finding Successor
•Let x be a node in the BST
•The successor of x is the next node in

the inorder traversal

1. What if x has a right child ?
 min in the subtree of right child

2. What if not ?
 first ancestor “on the right”of x

16

Finding Successor

x

Successor of x

y

Successor of y

17

•To help finding successor, we assume that
each node has a parent pointer

•Then we can define Successor as follows :

Implementation in C

Node * Successor(Node *x) {
if (x->right != NULL)

return Min(x->right) ;
y = x->parent ;
while (y != NULL && x == y->right)
{ x = y ; y = y->parent ; }
return y ;

}

18

•Similarly, we can define Predecessor :

Implementation in C

Node * Predecessor(Node *x) {
if (x->left != NULL)

return Max(x->left) ;
y = x->parent ;
while (y != NULL && x == y->left)
{ x = y ; y = y->parent ; }
return y ;

}

19

Query Performance
•Let h denote the node-height of the BST

Theorem:
The queries minimum, maximum, search,
predecessor, and successor can each be
performed in O(h) time

•What is the value of h in the best case ?
How about the worst case ?

20

Updates in a BST

21

Updates in a BST

•A BST supports the following updates:
1. Inserting a node z with key k
2. Deleting a node x

•Note: When we perform updates, we have
to maintain the BST property

22

Inserting a Node
•Let z be a new node to be inserted, and k

be its key

•Observation : After insertion, k becomes
searchable in BST
 the insertion position is the same as

the position we expect to find k

•Insertion is done by slightly modifying
the searching algorithm

23

Example of Insertion in BST
Insert a node
with key 30 8

23

48

31

5

3 6

30

24

Implementation in C
void Insert(Node *x, Node *z) {

if (x->key > z->key) {
if (x->left) Insert(x->left, z);
else x->left = z ;

}
else if (x->key < z->key) {

if (x->right) Insert(x->right, z);
else x->right = z ;

}
}

•Then, insertion is done by Insert(r, z) ,
where r = pointer to root of BST

25

Deleting a Node
•Let x be a node to be deleted
•Case 1 :

If x is a leaf, we just remove x

8

23

48

31

5

3 6

8

23

48

31

5

3

Delete 6

26

Deleting a Node
•Case 2 :

If x has one child, we connect x’s
parent to its child

8

23

48

31

5

3 6

Delete 48

8

23

31

5

3 6

27

Deleting a Node
•Case 3 :

If x has two children, we swap x with its
successor, and then delete x

8

23

48

31

5

3 6

Delete 8

23

48

31

5

3 6

28

Deleting a Node
•In Case 3, the successor of x does not

have a left child. Why?

8

23

48

31

5

3 6

Delete 8

23

48

31

5

3 6

29

Implementation in C
•To ease our discussion, we now define a

function Transplant, such that :
Transplant(x, y) links x’s parent to y

and y’s parent is changed accordingly

Transplant(x, y)
x

y

x

y

30

Implementation in C

void Transplant(Node *x, Node *y) {
if (x->parent == NULL) // x is root
{ r = y ; } // set y as root
else if (x->parent->left == x)
{ x->parent->left = y ; }
else { x->parent->right = y ; }
if (y != NULL)

y->parent = x->parent ;
}

•The function Transplant(x, y) can be
easily implemented as follows :

31

Implementation in C
•Now Case 1 can be implemented as follows :

void Delete(Node *x) {

/* Case 1: x is a leaf */
if (!x->left && !x->right)

Transplant(x, NULL);

/* Case 2 and Case 3 */
...

}

32

Implementation in C
…and Case 2 can be implemented as follows :
void Delete(Node *x) {

/* Case 1 */ ...
/* Case 2: x has one child */
else if (x->left == NULL)

Transplant(x, x->right) ;
else if (x->right == NULL)

Transplant(x, x->left) ;
/* Case 3 */ ...

}

33

Implementation in C
•For Case 3, we have two subcases :
void Delete(Node *x) {

/* Case 1 and Case 2 */ ...
else { /* Case 3 : x has two children */

y = Min(x->right); // get successor
if (y->parent == x) { // Subcase 3.1
Transplant(x, y) ; y->left = x->left ;
x->left->parent = y ;

}
else { /* Subcase 3.2 */ ... }

}
}

34

Implementation in C
void Delete(Node *x) {

else { /* Case 3: x has two children */
...
else { // Subcase 3.2
Transplant(y, y->right) ;
Transplant(x, y) ;
y->right = x->right; y->left = x->left;
x->right->parent = x->left->parent = y;

}
}

}

35

Update Performance
•Let h denote the node-height of the BST

Theorem:
Inserting or deleting a node in a BST can
each be performed in O(h) time

36

Remarks
•The implementation here discusses the

core idea, and does not handle the
boundary cases well
Ex: insertion in an empty BST, or

deletion resulting an empty BST
•Also, more than one way to implement

Ex: deletion can be done by swapping with
the predecessor, search can be done
with while-loop instead of recursion

