
1

CS2351
Data Structures

Lecture 12:
Graph and Tree Traversals III

2

About this lecture
•We introduce the Topological Sort

problem on directed acyclic graph (DAG)

•We give two linear-time algorithms :
(1) Using Queue
(2) Using Stack

3

Topological Sort
•Directed graph can be used to indicate

precedence among a set of events
•E.g., a possible precedence is dressing

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

4

Topological Sort
•The previous directed graph is also called

a precedence graph

Question: Given a precedence graph G,
can we order the events such that
if (u,v) is in G (i.e. u should complete before v)

then u appears before v in the ordering ?

We call this problem topological sorting of G

5

Topological Sort

Fact: If G contains a cycle, then it is
impossible to find a desired ordering
(Prove by contradiction)

•However, if G is acyclic (contains no cycles) we
shall give two algorithms that always find
the desired ordering

6

Topological Sort (with Queue)

Topological-Sort(G) // given G is acyclic

{
while (G contains a vertex)
{ 1. Pick a vertex v with in-degree = 0 ;

2. Remove all its outgoing edges ;
3. Output v ;

}
} Why is the algorithm correct?

7

Topological Sort (with Queue)
Theorem:

If G is acyclic, the previous algorithm
produces a topological sort of G

Proof:
Two cases may happen when we run the
previous algorithm.
Case 1 : All vertices are output
Case 2 : Some vertex may not be output

8

Proof
•In Case 1, vertices are sorted correctly

•In Case 2, the remaining vertices must
each have in-degree 1. Now, we pick a
vertex v in this group, repeatedly visit
another vertex by tracing an incoming
edge, some vertex will be visited twice
(why?)  a cycle is found !! v

9

Performance
•Let G = (V,E) be the input directed graph
•Running time for Topological-Sort :

1. Each vertex keeps # incoming edges
2. Finding vertices with in-degree = 0 :

Naïve method: O(|V|2) total time
Clever method: (use a queue Q)
Enqueue vertex once its in-degree = 0

•Total time: O(|V|+|E|)

10

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

When a vertex is output,
its indegree is 0

4

7

8

9

2

6

3

1

5

Topological Sort (Example)

11

Topological Sort (with Stack)

Topological-Sort(G) // given G is acyclic

{
1. Call DFS on G
2. Output vertices in decreasing

order of their finishing times ;
}

Why is the algorithm correct?

12

Topological Sort (with Stack)
Theorem:

If G is acyclic, the previous algorithm
produces a topological sort of G

Proof: Let (u,v) be an edge. We shall show
f(v) f(u) so that the ordering is correct.
Firstly, during DFS, there are two cases
•Case 1 : u is visited before v
•Case 2 : v is visited before u

13

Proof
•In Case 1, u cannot finish before DFS is

performed on all its neighbors. Since v is
a neighbor of u , we must have

d(u) d(v) f(v) f(u)
•In Case 2, v must have finished before u

starts (else, there will be a path from v to
u and the graph contains a cycle.) Thus,

f(v) d(u)  f(v) f(u)
•Both cases show f(v) f(u)  Done !

14

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

Discovery and Finishing Times
after a possible DFS

1/8

2/5

3/4

6/7

11/14

12/13

9/10

15/18

16/17

Topological Sort (Example)

15

under-shorts

pants

belt

shirt

tie

socks

shoes
watch

jacket

Ordering Finishing Times
(in descending order)

6

8

9

7

3

4

5

1

2

If we order the events from left to right,
anything special about the edge directions ?

16

Performance
•Let G = (V,E) be the input directed graph
•Running time for Topological-Sort :

1. Perform DFS : O(|V|+|E|) time
2. Sort finishing times

Naïve method: O(|V| log |V|) time
Clever method: (use an extra stack S)

During DFS, push a node into stack S
once finished  no need to sort !!

•Total time: O(|V|+|E|)

