CS2351 Data Structures

Lecture 11: Graph and Tree Traversals II

1

About this lecture

- We introduce some popular algorithms to traverse a rooted ordered binary tree
 - 1. Level Order (similar to BFS)
 - 2. Pre-order, Post-order, In-order (similar to DFS)
- Then, we will discuss a related topic called expression tree

Level Order Traversal

Level Order

- Imagine we have a rooted binary tree, and we apply the BFS algorithm on the root (as the source)
- What will happen?

Level Order

 The nodes of the tree will be visited in the following order :

• This is called the level order traversal

- To implement level order traversal, we just run BFS on the root
- Since each node (except root) in a rooted tree has exactly one parent, it can only be discovered once during BFS
 - No need to have an extra array to remember if a node is marked or not, and we need only a queue
- Running time : O(|V|)

Preorder/Postorder/Inorder Traversal

DFS Traversal on a Tree

- We now describe 3 popular algorithms to traverse a tree
 - Preorder, Postorder, Inorder
 - They are all based on DFS
- The only difference is:

"During the traversal, what time they will output the content of a node"

DFS on a Tree

- When we apply DFS on a tree, when it visits a node :
 - it calls DFS recursively on left child
 - then DFS recursively on right child

DFS on a Tree

- A node is actually visited a few times
 - Exactly 3 times for binary tree
- They include: the time before the first DFS, and the times after each DFS

Preorder Traversal

- The preorder traversal prints the content of a node when it is first visited
- In our example, we print : FBDEAC

Postorder Traversal

- The postorder traversal prints the content of a node when it is last visited
- In our example, we print : DEBCAF

Inorder Traversal

- The inorder traversal prints the content of a node just before we visit right child
- In our example, we print : DBEFAC

 To implement the above traversal algorithms, we first see that DFS on a binary tree can be done as follows :

DFS (u) {
 1. Call DFS (u.left);
 2. Call DFS (u.right);
}

At the main program, we call DFS (root)

 Then the preorder traversal is implemented as follows :

Preorder (u) {
 1. Print content of u ;
 2. Call Preorder (u.left) ;
 3. Call Preorder (u.right) ;
}

At the main program, we call Preorder (root)

• Similarly, the postorder traversal is implemented as follows :

Postorder (u) {
 1. Call Postorder (u.left);
 2. Call Postorder (u.right);
 3. Print content of u;
}

At the main program, we call Postorder (root)

 And the inorder traversal is implemented as follows :

Inorder (u) {
 1. Call Inorder (u.left);
 2. Print content of u;
 3. Call Inorder (u.right);
}

At the main program, we call Inorder (root)

Remarks

- Running time : O(|V|) time
- The preorder and postorder traversals are well-defined for non-binary trees
 - For inorder, to visit a node with degree more than 2, there are 2 common ways:
 One prints the content after the first DFS, and one prints after every DFS except the last

E

Two versions of Inorder: EBCF vs EBCBF

- We can use rooted binary trees to represent mathematical expressions that involve only binary operators
- Each internal node stores an operator
- Each leaf stores an operand
- Ex :

- Each internal node u corresponds to a value computed recursively as follows:
 - 1. Compute the value x corresponding to left child of u
 - 2. Compute the value y corresponding to right child of u
 - 3. The value of $u = x \Delta y$ where Δ is the operator stored in u
- value of expression = value of the root

- Each mathematical expression has a corresponding expression tree
- To find such a tree, we can :
 - 1. First determine which operator is last applied, then put it inside the root ;
 - 2. After that, recursively construct the left and right subtrees of the root based on the contents on the left and right sides of the operator

• $Ex: 5+((1+2)\times 4) - 3$

• If we now perform preorder traversal on the expression tree, we get the prefix notation of the expression

 If we perform postorder traversal instead, we get the postfix notation of the expression

Evaluation

- In prefix or postfix notations, we do not need any parentheses
 - Both notations can allow us to compute the value of the original expression
 - Idea : Using a stack
- Remark : the original expression is stored in the infix notation

Evaluating Prefix Notation

- In prefix notation, when there are two consecutive "values", we can apply the operator before the two values
- So the evaluation can be done as follows:
 - Push operator or value on a stack, but ..
 - Whenever there are two values x and y on top of the stack, pop x and y, and also the next operator △. Then push a new value x △ y back to stack

Evaluating Prefix Notation Ex: $-+5 \times +1243$ (Prefix notation of $5 + ((1+2) \times 4) - 3)$

contents of stack after key operations

$$\begin{array}{r} -+5 \times +12 \\ -+5 \times 3 \\ -+5 \times 3 \\ -+5 \\ 12 \\ -17 \\ -17 \\ 3 \\ 14 \end{array}$$

Evaluating Postfix Notation

- In postfix notation, when we see an operator, we can apply the operator to the two values before the operator
- So the evaluation can be done as follows:
 - Push operator or value on a stack, but ..
 - Whenever we see an operator Δ , we pop Δ , and the next two values x and y on top of the stack. Then push a new value x Δ y back to stack

Evaluating Postfix Notation

• Ex: $512 + 4 \times + 3 -$

(Postfix notation of $5 + ((1+2) \times 4) - 3)$

contents of stack after key operations

512+
53
534×
5 12
5 12 +
17
173 –
14

Remarks

- Prefix or postfix notations are very useful because they can evaluate an expression easily (in one pass)
- In the next assignment, we will examine how to convert an expression from infix to postfix
 - This can also be done with a stack !!