
1

CS2351
Data Structures

Lecture 11:
Graph and Tree Traversals II

2

About this lecture
•We introduce some popular algorithms to

traverse a rooted ordered binary tree
1. Level Order (similar to BFS)
2. Pre-order, Post-order, In-order

(similar to DFS)

•Then, we will discuss a related topic called
expression tree

3

Level Order Traversal

4

Level Order
•Imagine we have a rooted binary tree,

and we apply the BFS algorithm on the
root (as the source)

•What will happen ?

5

Level Order
•The nodes of the tree will be visited in

the following order :
1

2 3

4 5 6

•This is called the level order traversal

6

Implementation
•To implement level order traversal, we

just run BFS on the root
•Since each node (except root) in a rooted

tree has exactly one parent, it can only
be discovered once during BFS
•No need to have an extra array to

remember if a node is marked or not,
and we need only a queue

•Running time : O(|V|)

7

Preorder/Postorder/Inorder
Traversal

8

DFS Traversal on a Tree

•We now describe 3 popular algorithms to
traverse a tree
•Preorder, Postorder, Inorder
•They are all based on DFS

•The only difference is:
“During the traversal, what time they
will output the content of a node”

9

DFS on a Tree
•When we apply DFS on a tree, when it

visits a node :
• it calls DFS recursively on left child
•then DFS recursively on right child

F

B

D E

A

C

10

DFS on a Tree
•A node is actually visited a few times

•Exactly 3 times for binary tree
•They include: the time before the first

DFS, and the times after each DFS

F

B

D E

A

C

11

Preorder Traversal
•The preorder traversal prints the

content of a node when it is first visited
•In our example, we print : FBDEAC

F

B

D E

A

C

12

Postorder Traversal
•The postorder traversal prints the

content of a node when it is last visited
•In our example, we print : DEBCAF

F

B

D E

A

C

13

Inorder Traversal
•The inorder traversal prints the content

of a node just before we visit right child
•In our example, we print : DBEFAC

F

B

D E

A

C

14

Implementation
•To implement the above traversal

algorithms, we first see that DFS on a
binary tree can be done as follows :

DFS (u) {
1. Call DFS (u.left) ;
2. Call DFS (u.right) ;

}

At the main program, we call DFS (root)

15

Implementation
•Then the preorder traversal is

implemented as follows :

Preorder (u) {
1. Print content of u ;
2. Call Preorder (u.left) ;
3. Call Preorder (u.right) ;

}

At the main program, we call Preorder (root)

16

Implementation
•Similarly, the postorder traversal is

implemented as follows :

Postorder (u) {
1. Call Postorder (u.left) ;
2. Call Postorder (u.right) ;
3. Print content of u ;

}

At the main program, we call Postorder (root)

17

Implementation
•And the inorder traversal is implemented

as follows :

Inorder (u) {
1. Call Inorder (u.left) ;
2. Print content of u ;
3. Call Inorder (u.right) ;

}

At the main program, we call Inorder (root)

18

Remarks
•Running time : O(|V|) time
•The preorder and postorder traversals

are well-defined for non-binary trees
•For inorder, to visit a node with degree

more than 2, there are 2 common ways:
One prints the content after the first
DFS, and one prints after every DFS
except the last

E C
F

B

Two versions of Inorder:
EBCF vs EBCBF

19

Expression Tree

20

Expression Tree
•We can use rooted binary trees to

represent mathematical expressions
that involve only binary operators

•Each internal node stores an operator
•Each leaf stores an operand
•Ex :

3 4

2

21

Expression Tree
•Each internal node u corresponds to a

value computed recursively as follows:
1. Compute the value x corresponding to

left child of u
2. Compute the value y corresponding to

right child of u
3. The value of u = x y where is the

operator stored in u
•value of expression = value of the root

22

Expression Tree
•Ex :

3 4

2

Value: 3 4

Value: (3 4) 2

3 4

2

Value: 3 4

Value: (3 4) 2

23

Expression Tree
•Each mathematical expression has a

corresponding expression tree
•To find such a tree, we can :

1. First determine which operator is last
applied, then put it inside the root ;

2. After that, recursively construct the
left and right subtrees of the root
based on the contents on the left and
right sides of the operator

24

Expression Tree
•Ex : 5 ((1 2) 4) 3

L R

25

Expression Tree
•Ex : 5 ((1 2) 4) 3

5

1 2

4

3

26

Expression Tree
•If we now perform preorder traversal on

the expression tree, we get the prefix
notation of the expression

5

1 2

4

3
Prefix Notation :
+ 5 + 1 2 4 3

27

Expression Tree
•If we perform postorder traversal

instead, we get the postfix notation of
the expression

5

1 2

4

3
Postfix Notation :
5 1 2 + 4 + 3

28

Evaluation
•In prefix or postfix notations, we do not

need any parentheses
•Both notations can allow us to compute

the value of the original expression
•Idea : Using a stack

•Remark : the original expression is stored
in the infix notation

29

Evaluating Prefix Notation
•In prefix notation, when there are two

consecutive “values”, we can apply the
operator before the two values

•So the evaluation can be done as follows:
•Push operator or value on a stack, but ..
•Whenever there are two values x and y

on top of the stack, pop x and y, and
also the next operator . Then push a
new value x y back to stack

30

Evaluating Prefix Notation
•Ex : + 5 + 1 2 4 3

(Prefix notation of 5 ((1 2) 4) 3)

14
17 3
17
+ 5 12
+ 5 3 4
+ 5 3
+ 5 + 1 2

contents of stack
after key operations

31

Evaluating Postfix Notation
•In postfix notation, when we see an

operator, we can apply the operator to
the two values before the operator

•So the evaluation can be done as follows:
•Push operator or value on a stack, but ..
•Whenever we see an operator , we

pop , and the next two values x and y
on top of the stack. Then push a new
value x y back to stack

32

Evaluating Postfix Notation
•Ex : 5 1 2 + 4 + 3

(Postfix notation of 5 ((1 2) 4) 3)

14
17 3
17
5 12 +
5 12
5 3 4
5 3
5 1 2 +

contents of stack
after key operations

33

Remarks
•Prefix or postfix notations are very

useful because they can evaluate an
expression easily (in one pass)

•In the next assignment, we will examine
how to convert an expression from infix
to postfix
•This can also be done with a stack !!

