CS2351 Data Structures

Lecture 10:
Graph and Tree Traversals I

About this lecture

- We introduce two popular algorithms to traverse a graph

1. Breadth First Search (BFS)
2. Depth First Search (DFS)

- DFS Tree and DFS Forest
- Parenthesis theorem

Breadth First Search

Lost in a Desert

- After an unfortunate accident, we survived, but are lost in a desert
- To keep surviving, we need to find water
- How to find the closest water source?

Breadth First Search (BFS)

- A simple algorithm to find all vertices reachable from a particular vertex s
- s is called source vertex
- Idea: Explore vertices in rounds
- At Round k, visit all vertices whose shortest distance (\#edges) from s is $k-1$
- Also, discover all vertices whose shortest distance from s is k

The BFS Algorithm

1. Mark s as discovered in Round 0
2. For Round $k=1,2,3, \ldots$,

For (each u discovered in Round k-1)
\{ Marku as visited:
Visit each neighbor v of u;
If (v not visited and not discovered) Mark vas discovered in Round k ;

Stop if no vertices were discovered in Round k-1

Example (s = source)

? visited (? = discover time)
Discovered (? = discover time) direction of edge when new node is discovered

Example (s = source)

? visited (? discover time)
? discovered (? = discover time) direction of edge when new node is discovered

Example (s = source)

? visited

> (? = discover time)

ว discovered
(? = discover time)
\rightarrow direction of edge when new node is discovered

Example ($s=$ source)

Done when no new node is discovered

The directed edges form a tree that contains all nodes reachable from s Called BFS tree of s

Correctness

- The correctness of BFS follows from the following theorem:

Theorem: A vertex v is discovered in Round k if and only if shortes \dagger distance of v from source s is k

Proof: By induction

Performance

- BFS algorithm is easily done if we use
- an $O(|V|)$-size array to store discovered/visited information
- a separate list for each round to store the vertices discovered in that round
- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
\rightarrow Total time: $O(|V|+|E|)$
\rightarrow Total space: $O(|V|+|E|)$

Performance (2)

- Instead of using a separate list for each round, we can use a common queue
- When a vertex is discovered, we put it at the end of the queue
- To pick a vertex to visit in Step 2, we pick the one at the front of the queue
- Done when no vertex is in the queue
\rightarrow No improvement in time/space ...
\rightarrow But algorithm is simplified
Question: Can you prove the correctness of using queue?

Depth First Search

Depth First Search (DFS)

- An alternative algorithm to find all vertices reachable from a particular source vertexs
- Idea:

Explore a branch as far as possible before exploring another branch

- Easily done by recursion or stack

The DFS Algorithm

DFS(u)
\{ Marku as discovered : while (u has unvisited neighbor v) DFS(v);
Mark u as finished :
\}
The while-loop explores a branch as far as possible before the next branch

Example (s = source)

Example (s = source)

finished
discovered
direction of edge when new node is discovered

Example (s = source)

finished
discovered
direction of edge when new node is discovered

Example (s = source)

finished
discovered
\rightarrow direction of edge when

Example (s = source)

finished
discovered
\rightarrow direction of edge when

Example (s = source)

Done when s is discovered

The directed edges form a tree that contains all nodes reachable from s

Called DFS tree of s

Generalization

- Just like BFS, DFS may not visit all the vertices of the input graph G, because :
- G may be disconnected
- G may be directed, and there is no directed path from s to some vertex
- In most application of DFS (as a subroutine), once DFS tree of s is obtained, we will continue to apply DFS algorithm on any unvisited vertices

Generalization (Example)

Suppose the input graph is directed

Generalization (Example)

1. After applying DFS on s

Generalization (Example)

2. Then, after applying DFS on \dagger

Generalization (Example)

3. Then, after applying DFS on y

Generalization (Example)

4. Then, after applying DFS on r

Generalization (Example)

5. Then, after applying DFS on v

Generalization (Example)

Result : a collection of rooted trees called DFS forest

Performance

- Since no vertex is discovered twice, and each edge is visited at most twice (why?)
\rightarrow Total time: $O(|V|+|E|)$
- As mentioned, apart from recursion, we can also perform DFS using a LIFO stack (Do you know how?)

Discovery and Finishing Times

- When the DFS algorithm is run, let us consider a global time such that the time increases one unit :
- when a node is discovered, or
- when a node is finished
(i.e., finished exploring all unvisited neighbors)
- Each node u records : $d(u)=$ the time when u is discovered, and $f(u)=$ the time when u is finished

Discovery and Finishing Times

In our first example (undirected graph)

Discovery and Finishing Times

In our second example (directed graph)

Nice Properties

Lemma: For any node $u, d(u)<f(u)$
Lemma: For nodes u and v,

$d(u), d(v), f(u), f(v)$ are all distinct

Theorem (Parenthesis Theorem):
Let u and v be two nodes with $\mathrm{d}(\mathrm{u})<\mathrm{d}(\mathrm{v})$. Then, either
1.
$d(u)<d(v)$
2. $d(u)<f(u)<d(v)<f(v)$ [disjoint]
2. $\mathrm{d}(\mathrm{u})<\mathrm{f}(\mathrm{u})<\mathrm{d}(\mathrm{v})<\mathrm{f}(\mathrm{v})$ [disjoint]
[contain], or

Proof of Parenthesis Theorem

- Consider the time when v is discovered
- Since u is discovered before v, there are two cases concerning the status of u :
- Case 1: (u is not finished)

This implies v is a descendant of u
$\rightarrow f(v)<f(u)$
(why?)

- Case 2: (u is finished)
$\rightarrow f(u)<d(v)$

Corollary

Corollary:
v is a (proper) descendant of u

$$
\begin{gathered}
\text { if and only if } \\
d(u)<d(v)<f(v)<f(u)
\end{gathered}
$$

Proof: $\quad v$ is a (proper) descendant of u
$\Leftrightarrow d(u)<d(v)$ and $f(v)<f(u)$
$\Leftrightarrow d(u)<d(v)<f(v)<f(u)$

