
1

CS2351
Data Structures

Lecture 10:
Graph and Tree Traversals I

2

About this lecture
•We introduce two popular algorithms to

traverse a graph
1. Breadth First Search (BFS)
2. Depth First Search (DFS)

•DFS Tree and DFS Forest
•Parenthesis theorem

3

Breadth First Search

4

Lost in a Desert
•After an unfortunate accident, we

survived, but are lost in a desert
•To keep surviving, we need to find water
•How to find the closest water source?

where is water?

5

Breadth First Search (BFS)
•A simple algorithm to find all vertices

reachable from a particular vertex s
• s is called source vertex

•Idea: Explore vertices in rounds
•At Round k, visit all vertices whose

shortest distance (#edges) from s is k-1
•Also, discover all vertices whose

shortest distance from s is k

6

The BFS Algorithm
1. Mark s as discovered in Round 0
2. For Round k = 1, 2, 3, …,

For (each u discovered in Round k-1)
{ Mark u as visited ;

Visit each neighbor v of u ;
If (v not visited and not discovered)

Mark v as discovered in Round k ;
}
Stop if no vertices were
discovered in Round k-1

7

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0 0

direction of edge when
new node is discovered

1

1 1

01

11

8

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0

direction of edge when
new node is discovered

0 2

1

0

1

1

2 1

1

1 12

2

1

1

2

9

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

visited
(? = discover time)

discovered
(? = discover time)

?

?

0

direction of edge when
new node is discovered

0

3

1

0

1

1 1

1 1

1

1

2

2

2

1 42

2 3

3

4

2

10

Example (s = source)

v

r s

w x

t u

y

0

1 1

1

2

3

4

2
Done when no new
node is discovered

v

r s

w x

t u

y

0

1 1

1

2

3

4

2 The directed edges form
a tree that contains all
nodes reachable from s

Called BFS tree of s

11

Correctness

•The correctness of BFS follows from the
following theorem :

Theorem: A vertex v is discovered in
Round k if and only if shortest
distance of v from source s is k

Proof: By induction

12

Performance
•BFS algorithm is easily done if we use

•an O(|V|)-size array to store
discovered/visited information

•a separate list for each round to store
the vertices discovered in that round

•Since no vertex is discovered twice, and
each edge is visited at most twice (why?)

 Total time: O(|V|+|E|)
 Total space: O(|V|+|E|)

13

Performance (2)
•Instead of using a separate list for each

round, we can use a common queue
•When a vertex is discovered, we put it

at the end of the queue
•To pick a vertex to visit in Step 2, we

pick the one at the front of the queue
•Done when no vertex is in the queue

 No improvement in time/space …
 But algorithm is simplified
Question: Can you prove the correctness of using queue?

14

Depth First Search

15

Depth First Search (DFS)
•An alternative algorithm to find all

vertices reachable from a particular
source vertex s

•Idea:
Explore a branch as far as possible
before exploring another branch

•Easily done by recursion or stack

16

The DFS Algorithm
DFS(u)
{ Mark u as discovered ;

while (u has unvisited neighbor v)
DFS(v);

Mark u as finished ;
}

The while-loop explores a
branch as far as possible
before the next branch

17

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

18

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

19

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

20

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

21

Example (s = source)

v

r s

w x

t u

y v

r s

w x

t u

y

v

r s

w x

t u

y

finished

discovered

direction of edge when
new node is discovered

22

Example (s = source)

Done when s is
discovered

The directed edges form
a tree that contains all
nodes reachable from s

Called DFS tree of s

v

r s

w x

t u

y

v

r s

w x

t u

y

23

Generalization
•Just like BFS, DFS may not visit all the

vertices of the input graph G, because :
• G may be disconnected
• G may be directed, and there is no

directed path from s to some vertex

•In most application of DFS (as a subroutine) ,
once DFS tree of s is obtained, we will
continue to apply DFS algorithm on any
unvisited vertices …

24

Generalization (Example)

v

r s

w x

t u

y

Suppose the input graph is directed

25

Generalization (Example)

v

r s

w x

t u

y

1. After applying DFS on s

26

Generalization (Example)

v

r s

w x

t u

y

2. Then, after applying DFS on t

27

Generalization (Example)

v

r s

w x

t u

y

3. Then, after applying DFS on y

28

Generalization (Example)

v

r s

w x

t u

y

4. Then, after applying DFS on r

29

Generalization (Example)

v

r s

w x

t u

y

5. Then, after applying DFS on v

30

Generalization (Example)

Result : a collection of rooted trees
called DFS forest

v

r s

w x

t u

y

31

Performance

•Since no vertex is discovered twice, and
each edge is visited at most twice (why?)

 Total time: O(|V|+|E|)

•As mentioned, apart from recursion, we
can also perform DFS using a LIFO stack
(Do you know how?)

32

Discovery and Finishing Times
•When the DFS algorithm is run, let us

consider a global time such that the time
increases one unit :
•when a node is discovered, or
•when a node is finished

(i.e., finished exploring all unvisited neighbors)

•Each node u records :
d(u) = the time when u is discovered, and
f(u) = the time when u is finished

33

Discovery and Finishing Times

In our first example
(undirected graph)

v

r s

w x

t u

y

1/1612/15

13/14 2/11

4/9 5/8

3/10 6/7

34

Discovery and Finishing Times

v

r s

w x

t u

y

1/613/14

15/16 2/5

7/10 8/9

3/4 11/12

In our second example
(directed graph)

35

Nice Properties
Lemma: For any node u, d(u) f(u)

Theorem (Parenthesis Theorem):
Let u and v be two nodes with d(u) d(v) .
Then, either
1. d(u) d(v) f(v) f(u) [contain], or
2. d(u) f(u) d(v) f(v) [disjoint]

Lemma: For nodes u and v,
d(u), d(v), f(u), f(v) are all distinct

36

Proof of Parenthesis Theorem
•Consider the time when v is discovered
•Since u is discovered before v, there are

two cases concerning the status of u :

•Case 1: (u is not finished)
This implies v is a descendant of u
 f(v) f(u) (why?)

•Case 2: (u is finished)
 f(u) d(v)

37

Corollary
Corollary:

v is a (proper) descendant of u
if and only if

d(u) d(v) f(v) f(u)

Proof: v is a (proper) descendant of u
 d(u) d(v) and f(v) f(u)
 d(u) d(v) f(v) f(u)

