CS23561
Data Structures

Lecture 10:
Graph and Tree Traversals I



About this lecture

* We introduce two popular algorithms to
traverse a graph

1. Breadth First Search (BFS)
2. Depth First Search (DFS)
+ DFS Tree and DFS Forest
* Parenthesis theorem



Breadth First Search



Lost in a Desert

After an unfortunate accident, we
survived, but are lost in a desert

To keep surviving, we need to find water
How to find the closest water source?

-

-
-
-
-

where is water?



Breadth First Search (BFS)

» A simple algorithm to find all vertices
reachable from a particular vertex s

s is called source vertex

* Idea: Explore vertices in rounds

- At Round k, visit all vertices whose
shortest distance (#edges) from s is k-1

+ Also, discover all vertices whose
shortest distance from s is k



The BFS Algorithm

1. Mark s as discovered in Round O
2. ForRound k=1,2, 3, ..,
For (each u discovered in Round k-1)
{ Mark u as visited ;
Visit each neighbor v of u;
If (v not visited and not discovered)
Mark v as discovered in Round k ;

}

Stop if no vertices were
discovered in Round k-1 6




Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)

o4 9%
;y l
2 4
Vv w X Y
N
(2] 4
Vv w X Y

Done when no new
hode is discovered

The directed edges form
a tree that contains all
hodes reachable from s

Called BFS tree of s
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Correctness

+ The correctness of BFS follows from the
following theorem :

Theorem: A vertex v is discovered in
Round k if and only if shortest
distance of v from source s is k

Proof: By induction
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Performance

BFS algorithm is easily done if we use

» an O(|V|)-size array to store
discovered/visited information

* a separate list for each round to store
the vertices discovered in that round

+ Since no vertex is discovered twice, and

each edge is visited at most twice (why?)
= Total time: O(|V]|+|E|)
- Total space: O(|V|+|E|)
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Performance (2)
» Instead of using a separate list for each
round, we can use a common queue

When a vertex is discovered, we put it
at the end of the queue

To pick a vertex to visit in Step 2, we
pick the one at the front of the queue

Done when no vertex is in the queue
= No improvement in time/space ...
= But algorithm is simplified

Question: Can you prove the correctness of using queue?
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Depth First Search
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Depth First Search (DFS)

» An alternative algorithm to find all
vertices reachable from a particular
source vertex s

+ Tdea:

Explore a branch as far as possible
before exploring another branch

» Easily done by recursion or stack
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The DFS Algorithm

DFS(u)
{  Mark u as discovered ;
while (u has unvisited neighbor v)
DFS(v);
Mark u as finished ;

The while-loop explores a
branch as far as possible
before the next branch
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Example (s = source)
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Done when s is
discovered

The directed edges form
a tree that contains all
hodes reachable from s

Called DFS tree of s
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Generalization

» Just like BFS, DFS may not visit all the
vertices of the input graph G, because :

G may be disconnected

G may be directed, and there is no
directed path from s to some vertex

* In most application of DFS (as a subroutine)
once DFS tree of s is obtained, we will
continue to apply DFS algorithm on any
unvisited vertices ..
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Generalization (Example)

Suppose the input graph is directed
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Generalization (Example)
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Generalization (Example)
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Generalization (Example)
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Generalization (Example)
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Generalization (Example)

5. Then, after applying DFS on v
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Generalization (Example)

Result : a collection of rooted trees
called DFS forest
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Performance

- Since no vertex is discovered twice, and

each edge is visited at most twice (why?)
= Total time: O(|V|+|E|)

» As mentioned, apart from recursion, we
can also perform DFS using a LIFO stack

(Do you know how?)
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Discovery and Finishing Times

* When the DFS algorithm is run, let us
consider a global time such that the time
Increases one unit :

- when a node is discovered, or
- when a node is finished
(i.e., finished exploring all unvisited neighbors)

- Each node u records :

d(u) = the time when u is discovered, and
f(u) = the time when u is finished
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Discovery and Finishing Times
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In our first example
(undirected graph)
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Discovery and Finishing Times
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(directed graph)
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Nice Properties
Lemma: For any node u, d(u) < f(u)

Lemma: For nodes uand v,
d(u), d(v), f(u), f(v) are all distinct

Theorem (Parenthesis Theorem):
Let u and v be two nodes with d(u) < d(v) .
Then, either
1. d(u) <d(v) < f(v) < f(u) I[contain], or
2. d(u) <f(u)<d(v)<f(v) [disjoint]
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Proof of Parenthesis Theorem

+ Consider the time when v is discovered

+ Since u is discovered before v, there are
two cases concerning the status of u:

+ Case 1: (u is not finished)
This implies v is a descendant of u

= f(v) < f(u) (why?)

+ Case 2: (u is finished)
= f(u) <d(v)
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Corollary

Corollary:
v is a (proper) descendant of u
if and only if
d(u) < d(v) < f(v) < f(u)
Proof: v is a (proper) descendant of u

< d(u) <d(v) and f(v) < f(u)
< d(u) < d(v) < f(v) < f(u)
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