
CS2351 Data Structures

Final Project

Due: 11:59pm, June 26, 2011

In this project, you are asked to practise the usage of data structures by implementing a
contact book. You may design any new data structures that you find appropriate, or you may
simply use the ones that you have learnt in the class for this assignment. All the data structures
in your program (except arrays and pointers) must be implemented by yourself, which means
that you cannot use the libraries of data structures such as STL in C++. You should submit the
source code of your program to the iLMS system (http://lms.nthu.edu.tw/) before the deadline.
To grade your assignment, we will arrange a 25-minute session with you for a demonstration of
your program, at General Building II Room 734 on either June 27 or June 28. Please make sure
that the source code can be compiled without any error. Late submission will get at most 60%
for the grade.

Contact Book
A contact book contains the data you need when contacting your friends. The data may

consist of various attributes such as first name, last name, age, sex, phone number, email, and
birthday. See Table 1 for an example. The data should be stored in some data structures (instead
of storing as a plain text) to allow efficient operations. The major challenge of this assignment
is for you to think about what kind of data structures should be used in order to support the
desired functions (as described in the next section). For example, using a sorted array for phone
number is very good for searching, but if phone numbers may be inserted or deleted from time
to time, a simple array will not be suitable. To simplify the task, you may assume each element
in some of the attributes is unique. For instance, in our example in Table 1, we have assumed
that each phone number is unique.

First name Last name Phone number
Harry Potter 0995435355

Hermione Granger 0958416991
Ron Weasley 0901772105

Ginny Weasley 0926925019
Draco Malfoy 0990224661
Albus Dumbledore 0911276562
Tom Riddle 0975867725

Table 1: An example of a contact book

Functions of a Contact Book
We define the following three categories of functions in this project: Basic, optional and

others. Your program should implement all the basic functions on at least three attributes. To
get a higher grade, you may implement some optional functions, or add other functions that you
find useful. The following are the descriptions of the basic functions:

• User interface: A readable user interface. The interface needs not be window-based, a
command-line interaction will already be quite good.

1



7
Harry,Potter,0995435355
Hermione,Granger,0958416991
Ron,Weasley,0901772105
Ginny,Weasley,0926925019
Draco,Malfoy,0990224661
Albus,Dumbledore,0911276562
Tom,Riddle,0975867725

Figure 1: Example file content of Table 1

• Search: Given an attribute of a friend, find another (or all) attribute of that friend.

• Insertion: Insert a new friend into your contact book.

• Deletion: Delete an existing friend from your contact book by given a specific attribute
of that friend.

• Edit: Update an attribute of a friend by given a specific attribute of that friend.

• Load: Read data from a file which contains data of multiple friends. See Figure 1 as a
file example. This function may be used at the time the program starts, and the function
can be thought as a sequence of multiple insertions. However, we encourage you to think
about if there is some way to load data faster. Note that you can define your own file
format, which means that your program do not need to be stored according to the format
of Figure 1.

• Save: Write data of your contact book to a file. Since the data of a running program
would be lost if the system crashes, saving data is a good way to protect the data against
crash. Note that the file format should be consistent with your load function.

The following are the descriptions of the optional functions:

• Max (or Min): Find the maximum (or minimum) of a specific attribute.

• Average: Find the average of a specific attribute. Note that the given attribute can only
be numeric attribute.

• Undo: Undo an insertion or a deletion. Your program can also support undoing edit.

• Redo: Redo the function which is undone before.

• And: Given the values of two or more attributes, find the friends with all attribute values
matching.

• Or: Given the values of two or more attributes of some friends, find the friends with at
least one attribute value matching.

• Similarity search: Given an attribute value X∗ of some friends, find the friends whose
attribute starts with X, where X is some string. For instance, if we search the phone
number 099∗ in Table 1, the results are the data of Harry and Draco. Note that this
function may only be done in string attribute.

2



• Sorting: List the friends sorted by a specific attribute. This function should work on all
attributes, which means that we can list the friends sorted by any attribute we want.

• Connectivity: Suppose the relationships of all your friends are stored in the contact book,
and all friends of your friends are also in the contact book. Given two of your friends A and
B, decide whether A can get the data of B without you. For example, if you (abbreviated
as Y ) have four friends A, B, C and D in the contact book, and the following relationships
are stored




Y A B C D

Y 1 1 1 1 1
A 1 1 1 0 1
B 1 1 1 0 0
C 1 0 0 1 0
D 1 1 0 0 1




where 1 represents the corresponding row and column are friend which can contact each
other directly, 0 otherwise. Then we can see that A can contact B directly without Y ,
but C cannot. Since C can only contact Y firstly and then get the contact information of
B. Thus C can only contact B through Y . In the other case, although D cannot contact
B directly, D can contact A firstly and then get contact information of B. Thus D can
contact B without Y . To explain further, we assume phone number is stored in the contact
book. Considering a situation that your friend A likes your friend B and wants to get the
phone number of B. Since A and you are friend, A can call you firstly and ask the phone
number of B. Or A can call his friend C1 to get the phone number. If C1 does not know
the phone number, he may call his friend C2 for help, and so on. Finally, there are two
results, one is you help A directly or indirectly1, the other is you do not help A at all. This
function decide whether A can get the data of B only if you help A. Note that the friend
relationships must be stored in your data structures additionally.

• Date: Date search is supported by the contact book. The date attribute, such as birthday,
should be stored in the data structures and contain the data of year, month and day.

Documentation
This project requires you to provide a simple document which contains the following contents:

• What kinds of functions do your program support?

• What are the data structures used for each function?

• Why do you use these data structures?

Grading
Your grade is consisted of two parts, function grade and documentation grade. For the

function grade, it is the sum of the grades, as shown in Table 2, for the functions supported by
your program. For the documentation grade, the evaluation is according to the reasons why you
choose the particular data structures to be implemented in the your program. Note that the
function grade is at most 100%, and the documentation grade is between 0.7 and 1.0. The final
grade of the project is

Final grade = Function grade×Document grade

1If you are the friend of Ci for some i, and you help to find out the phone number of B, then you help A
indirectly.

3



Function Function grade

Basic

User interface 10%
Search

60%

Insertion
Deletion

Edit
Load
Save

Optional

Max 3%
Min 3%

Average 3%
Undo 5%
Redo 5%
And 5%
Or 5%

Similarity search 10%
Sorting 10%

Connectivity 20%
Date 5%

Others 1∼20%

Table 2: Functions and the corresponding grades

4


