
1

CS2351
Data Structures

Tutorial :
Optimal Binary Search Tree

2

Writing a Translation Program

•Suppose we want to design a program to
translate English texts on food to Chinese

•First problem to solve:
Given an English word, can we quickly
search for its Chinese equivalent?

E.g., Apple  蘋果, Banana 香蕉,
Pizza 比薩, Burger 漢堡,
Hotdog熱狗, Spaghetti 意大利麵

3

•However, some English words may not
have a Chinese equivalent
•In this case, we report not found

•E.g., Biryani (a South Asian dish)

Burrito (a common Mexican food)

Jambalaya (a famous Louisiana dish)

Okonomiyaki (a kind of Japanese pizza)

Writing a Translation Program

4

•Let n = # of English words in our
database with Chinese equivalent

•Balanced Binary Search Tree
•worst-case O(log n) time per query

Writing a Translation Program

5

Balanced Binary Search Tree

apple burger

banana

hotdog

pizza

spaghetti

Keys = words in the database

6

•In real life, different words may be
searched with different frequencies
E.g., apple may be more often than pizza

•Also, there may be different frequencies
for the unsuccessful searches
E.g., we may unluckily search for a word in

the range (hotdog, pizza) more often
than in the range (spaghetti, +1)

Writing a Translation Program

7

•Suppose your friend in Google gives you
the probabilities of what a search will be:

= apple

= banana

0.21

apple 0.01

(apple, banana) 0.10

0.18

= burger 0.01

0.05

(burger, hotdog) 0.12

(banana, burger)

= hotdog

= pizza

0.02

(hotdog, pizza) 0.04

0.04

= spaghetti 0.07

0.11(pizza, spaghetti)

0.04spaghetti

Frequently searched

8

•Given these probabilities, we may want
words that are searched more frequently
closer to the root of the search tree

burger

hotdog

apple

banana

pizza

spaghetti

This tree has better expected performance

9

•To handle unsuccessful searches, we can
modify the search tree slightly (by adding
dummy leaves), and define the expected
search time as follows:

•Let k1 k2 …kn denote the n keys,
which correspond to the internal nodes

•Let d0 d1 d2 …dn be dummy keys for
ranges of the unsuccessful search
 dummy keys correspond to leaves

Expected Search Time

10

k3

k4

k1

k2

k5

k6d0 d1

d2 d3

d4 d5 d6

Search tree of Page 9 after modification

11

Lemma: Based on the modified search tree:
•when we search for a word ki,

search time = node-depth(ki)

•when we search for a word in range dj,
search time = node-depth(dj)

Search Time

12

•Let pi = Pr(ki is searched)
•Let qj = Pr(word in dj is searched)

So, i pi + j qj = 1

Expected search time

= i pi node-depth(ki) + j qj node-depth(dj)

Expected Search Time

13

Question:
Given the probabilities pi and qj,
can we construct a binary search tree
whose expected search time is minimized?

Optimal Binary Search Tree

Such a search tree is called an
Optimal Binary Search Tree (OBST)

14

Let T = OBST for the keys
(ki, ki+1, …, kj; di-1, di, …, dj)

whose root stores kr

Let L and R be its left and right subtrees

Lemma:
• L must be an OBST for the smaller keys

(ki , ki+1, …, kr-1; di-1, di, …, dr-1)
• R must be an OBST for the larger keys

(kr+1, kr+2, …, kj; dr, dr+1, …, dj)

Property of OBST

15

Property of OBST

kr

optimal optimal

kr

optimal

Proof : By contradiction

16

•To find the OBST, our idea is to decide
its root, and also the root of each subtree

•To help our discussion, we define :
Ei,j = expected time searching keys in

(ki, ki+1, …, kj; di-1, di, …, dj)

wi,j = s=i to j ps + t=i-1 to j qt

= sum of the probabilities of keys
(ki, ki+1, …, kj; di-1, di, …, dj)

Deciding Root of OBST

17

Deciding Root of OBST
Lemma: For any j ¸ i,

Ei,j = minr { Ei,r-1 + Er+1,j + wi,j }

kr Contribute
wi,j

Contribute
Ei,r-1

Contribute
Er+1,j

18

Deciding Root of OBST
Corollary:

Let r be the parameter that minimizes
{ Ei,r-1 + Er+1,j + wi,j }

Then the root of the OBST for keys
(ki, ki+1, …, kj; di-1, di, …, dj)

should be set to kr

19

Define a function Compute_E(i,j) as follows:
Compute_E(i, j) /* Finding Ei,j */

1. if (i == j+1) return qj; /* Exp time with key dj */

2. min = 1;
3. for (r = i, i+1, …, j) {

g = Compute_E(i,r-1) + Compute_E(r+1,j) + wi,j ;
if (g min) min = g;

}
4. return min ;

Computing Ei,j

20

Computing Ei,j

Question: What is its running time?

•It has a recurrence of the following form :

T(i, j) = r T(i, r-1) + r T(r+1, j) + 1
T(i, i) = 1

•By substitution, we find T(i, j) = (3j-i)

 Compute_E(1,n) takes (3n) time

21

Computing Ei,j faster
•Recall that when we use recursion to

compute the nth Fibonacci number, it runs
in exponential time

•But we can speed it up to O(n) time. Why ?
Key idea : avoid redundant computations
(by storing computed terms in a table)

•We now apply the same idea to speed up
the computation of Ei,j

22

Bottom-Up Approach
•We use a 2D table E to store Ei,j once

they are computed
•We also use a 2D table W to store wi,j

•The algorithm works as follows :
1. We first compute all entries in W
 This is done in O(n2) time (how?)

2. We compute Ei,j for j-i = 0,1,2,…,n-1

23

BottomUp_E() /* Finding Ei,j */

1. Fill all entries of W
2. for j = 1, 2, …, n, set E[j+1,j] = qj ;
3. for (length = 0,1,2,…, n-1)

Compute E[i,i+length] for all i;
// From W and E[x,y] with |x-y| < length

4. return E[1,n] ;

Running Time = (n3)

Bottom-Up Approach

24

Remarks
•A slight change in the algorithm allows us

to get the root of each subtree, and thus
the structure of OBST (how?)

•The powerful technique of storing
computed terms in a table is called
Dynamic Programming

•Knuth observed a further property so
that we can compute OBST in O(n2) time
(search wiki for more information)

