CS23561
Data Structures

Tutorial :
Optimal Binary Search Tree

Writing a Translation Program

» Suppose we want to design a program to
translate English texts on food to Chinese

* First problem to solve:

Given an English word, can we quickly
search for its Chinese equivalent?

E.g., Apple > %, Banana > 3 E,
Pizza > ‘* &, Burger - & F,
Hotdog > #. 43, Spaghetti > & = {4

2

Writing a Translation Program

* However, some English words may not
have a Chinese equivalent

» In this case, we report not found

» E.g., Biryani (a South Asian dish)

Burrito (a common Mexican food)
Jambalaya (a famous Louisiana dish)
Okonomiyaki (a kind of Japanese pizza)

Writing a Translation Program

*+ Let n = # of English words in our
database with Chinese equivalent

» Balanced Binary Search Tree
» worst-case O(log n) time per query

Balanced Binary Search Tree

hotdog
banana pizza
apple burger spaghetti

Keys = words in the database

Writing a Translation Program

* Inreal life, different words may be
searched with different frequencies

E.g., apple may be more often than pizza

+ Also, there may be different frequencies
for the unsuccessful searches

E.g., we may unluckily search for a word in
the range (hotdog, pizza) more often
than in the range (spaghetti, +0)

Suppose your friend in Google gives you
the probabilities of what a search will be:

< apple 0.01 = hotdog 0.02

= apple 0.21 o (hotdog, pizza) 0.04
(apple, banana) 0.10 laf = pizza 0.04

s I h

- (20l 0.18 (pizza, spaghetti) 0.11
(banana, burger) 0.05 = spaghetti 0.07

= burger 0.01 > spaghetti 0.04

(burger' hOTdog) 0.12 w5 Frequently searched

Given these probabilities, we may want
words that are searched more frequently
closer to the root of the search tree

banana
/ \
apple pizza
~ ~
hotdog spaghetti
d
burger

This tree has better expected performance

Expected Search Time

modify the search tree slight

- To handle unsuccessful searches, we can

Y (by adding

dummy leaves), and define the expected

search time as follows:

+ Let k; <k, <... < k,denote the n keys,
which correspond to the internal nodes

+ Let dy<d;<d, <..<d, be dummy keys for
ranges of the unsuccessful search

= dummy keys correspond to

leaves

B (k) (k)
(o) () (&) (e

Search tree of Page 9 after modification

10

Search Time

Lemma: Based on the modified search tree:
* when we search for a word k.,
search time = node-depth(k:)

* when we search for a word in range d;,
search time = node-depth(d;)

11

Expected Search Time

* Let p, = Pr(k; is searched)
+ Let q; = Pr(word in d; is searched)

So, 2. pi+2qu-= 1

Expected search time
= 2, p; hode-depth(k;) + 2, q; node-depth(d,)

12

Optimal Binary Search Tree

Question:
Given the probabilities p; and g;,

can we construct a binary search tree
whose expected search time is minimized?

Such a search tree is called an
Optimal Binary Search Tree (OBST)

13

Property of OBST

Let T = OBST for the keys
(ki Kig, oo Ky dig, dy, o, dy)

j
whose r'ooT stores K.

Let L and R be its left and right subtrees

Lemma:
L must be an OBST for the smaller keys
(ki Kivg, - Koo dig, di, oo, dig)

R must be an OBST for the larger keys
(Keo1, Kpezo oo Kyo dp, dig, o, dj)

Property of OBST

optimal

optimal

Proof : By contradiction

optimal

15

Deciding Root of OBST

- To find the OBST, our idea is to decide

its root, and also the root of each subtree
* To help our discussion, we define :

E.. = expected time searching keys in
(ki, Kig, oo Ko dig, i, o, dy)

.

Wi = Zszi o | Ps * Z‘r:i-l o | qd;

i
= sum of the probabilities of keys
(ki, Kia1, -, Ko dig, di, o, dy)

16

Deciding Root of OBST

Lemma: For any j > i,

Ei;j - mir‘r' { Ei,r'-l T Er'+1,‘j + Wi, }

i

.

» Contribute

Wl:J

Contribute
Er'+1,\j

Contribute
Ei,r'-l

17

Deciding Root of OBST

Corollary:
Let r be the parameter that minimizes

{ Ei,r‘-l T Er‘+1,\j T Wilj

Then the root of the OBST for keys
(ki, Kit, - K dig, di, o, dy)

should be set to k

r‘

18

Computing E; ;

Define a function Compute_E(i,j) as follows:
CompuTe_E(i,j) /* Finding E; ;, */
1. if (i == j+1) refurn qj; /* Exp time with key d; */
2. min = oo;
3. for(r=i,i+l, .., j) {
g = Compute_E(i,r-1) + Compute_E(r+1,j) + w;;
if (g <min) min=g;
}

4. return min

19

Computing E; ;
Question: What is its running time?

» It has a recurrence of the following form :

TG, §) = 2. T(, r-1) + 2 T(r+1, j) + 1
TG, i) =1

» By substitution, we find T(i, j) = (2(3i)
= Compute_E(1,n) takes €2(3") time

20

Computing E; ; faster

- Recall that when we use recursion to

compute the n™ Fibonacci number, it runs
in exponential time

» But we can speed it up to O(n) time. Why ?

Key idea : avoid redundant computations
(by storing computed terms in a table)

* We now apply the same idea to speed up
the computation of E;

21

- We also use a 2D table W to store w. .

Bottom-Up Approach

* We use a 2D table E to store E; ; once
they are computed

'J

* The algorithm works as follows :

1. We first compute all entries in W
= This is done in O(n?) time (how?)

2. We compute E;; for j-i=0,1,2,. n-1

22

Bottom-Up Approach

BottomUp_E() /* Finding B, ; */
1. Fill all entries of W
2.forj=1,2,.,n, set E[j*1,j]= q; -
3. for (length=01,2,..., n-1)
Compute E[i,i+length] for all i;

// From W and E[x,y] with |x-y| < length

4. return E[1,n];

Running Time = ©(n3)

23

Remarks

» A slight change in the algorithm allows us
to get the root of each subtree, and thus
the structure of OBST (how?)

» The powerful technique of storing
computed terms in a table is called
Dynamic Programming

Knuth observed a further property so
that we can compute OBST in O(n?) time

(search wiki for more information)

24

