CS2351 Data Structures

Tutorial : Optimal Binary Search Tree

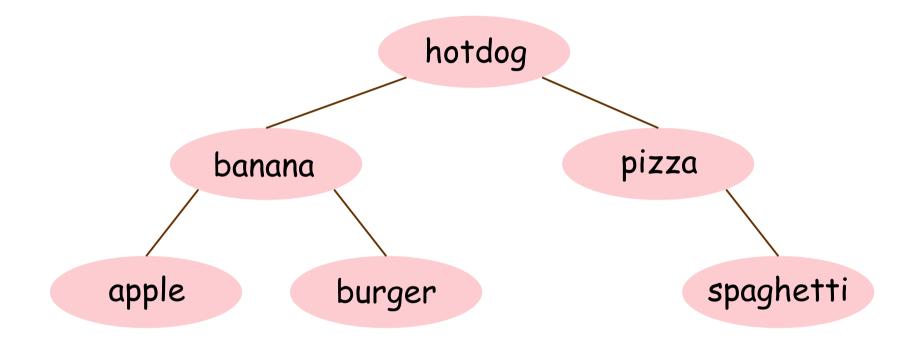
1

- Suppose we want to design a program to translate English texts on food to Chinese
- First problem to solve:
 Given an English word, can we quickly search for its Chinese equivalent?
- E.g., Apple → 蘋果, Banana → 香蕉,
 Pizza → 比薩, Burger → 漢堡,
 Hotdog→ 熱狗, Spaghetti → 意大利麵

- However, some English words may not have a Chinese equivalent
 - In this case, we report not found
- E.g., Biryani (a South Asian dish) Burrito (a common Mexican food) Jambalaya (a famous Louisiana dish) Okonomiyaki (a kind of Japanese pizza)

- Let n = # of English words in our database with Chinese equivalent
- Balanced Binary Search Tree
 - worst-case O(log n) time per query

Balanced Binary Search Tree

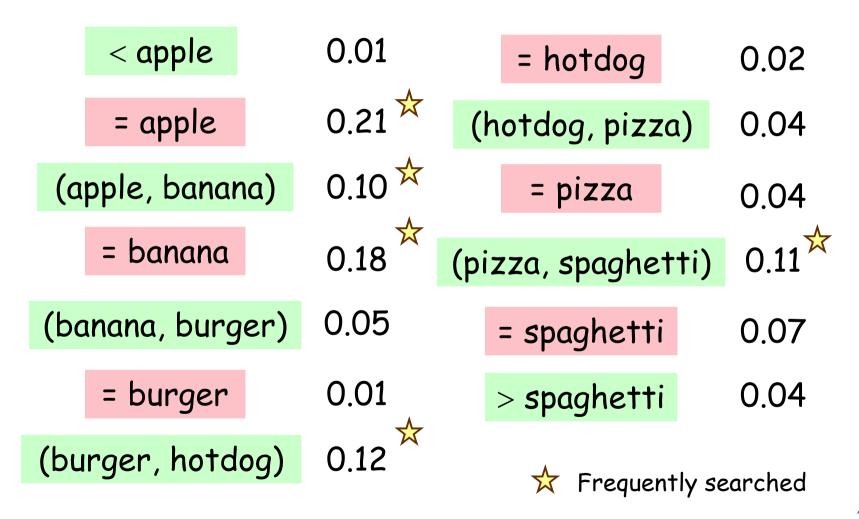


Keys = words in the database

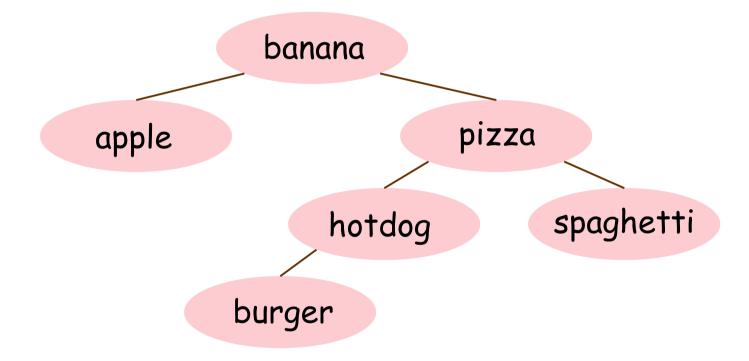
- In real life, different words may be searched with different frequencies
 E.g., apple may be more often than pizza
- Also, there may be different frequencies for the unsuccessful searches

E.g., we may unluckily search for a word in the range (hotdog, pizza) more often than in the range (spaghetti, $+\infty$)

 Suppose your friend in Google gives you the probabilities of what a search will be:



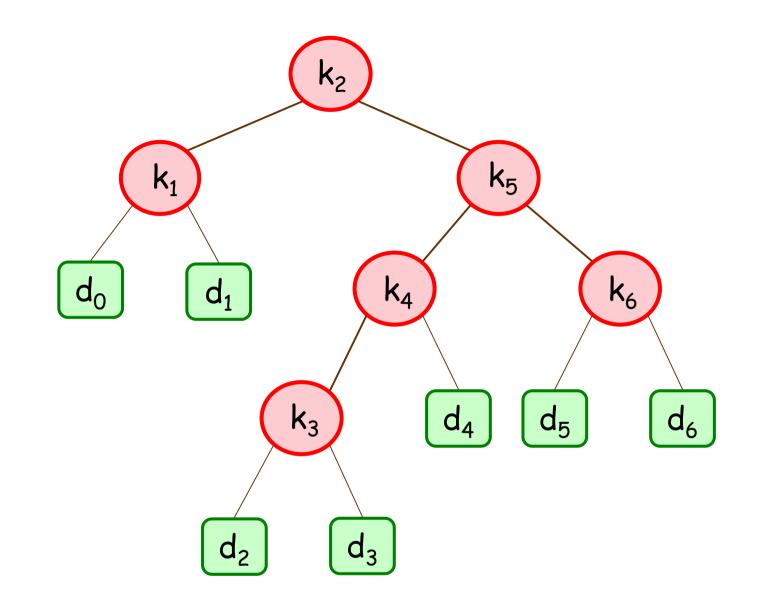
 Given these probabilities, we may want words that are searched more frequently closer to the root of the search tree



This tree has better expected performance

Expected Search Time

- To handle unsuccessful searches, we can modify the search tree slightly (by adding dummy leaves), and define the expected search time as follows:
- Let $k_1 < k_2 < ... < k_n$ denote the n keys, which correspond to the internal nodes
- Let d₀ < d₁ < d₂ < ... < d_n be dummy keys for ranges of the unsuccessful search
 → dummy keys correspond to leaves



Search tree of Page 9 after modification

Search Time

Lemma: Based on the modified search tree:

- when we search for a word k_i,
 search time = node-depth(k_i)
- when we search for a word in range d_j, search time = node-depth(d_j)

Expected Search Time

- Let p_i = Pr(k_i is searched)
- Let $q_j = Pr(word in d_j is searched)$

So,
$$\sum_{i} p_{i} + \sum_{j} q_{j} = 1$$

Expected search time

= $\Sigma_i p_i$ node-depth(k_i) + $\Sigma_j q_j$ node-depth(d_j)

Optimal Binary Search Tree

Question:

Given the probabilities p_i and q_j , can we construct a binary search tree whose expected search time is minimized?

Such a search tree is called an Optimal Binary Search Tree (OBST)

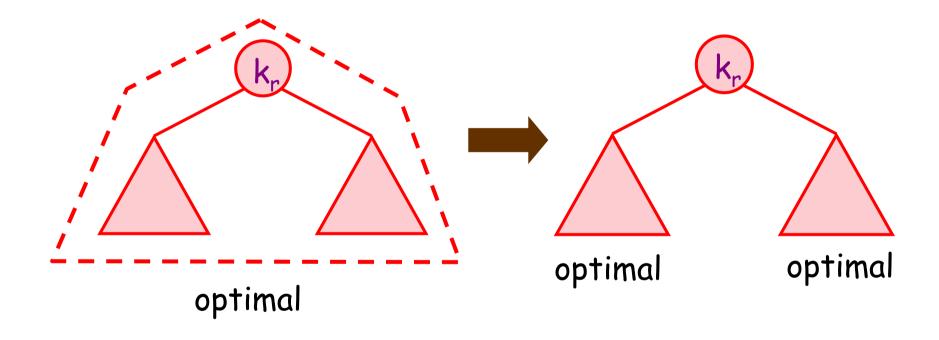
Property of OBST

Let T = OBST for the keys (k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j) whose root stores k_r Let L and R be its left and right subtrees

Lemma:

- L must be an OBST for the smaller keys $(k_i, k_{i+1}, \dots, k_{r-1}; d_{i-1}, d_i, \dots, d_{r-1})$
- R must be an OBST for the larger keys $(k_{r+1}, k_{r+2}, ..., k_j; d_r, d_{r+1}, ..., d_j)$

Property of OBST



Proof : By contradiction

Deciding Root of OBST

- To find the OBST, our idea is to decide its root, and also the root of each subtree
- To help our discussion, we define :

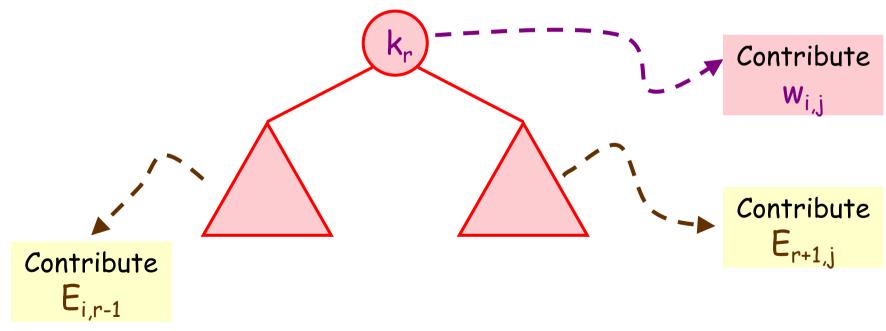
$$E_{i,j} = expected time searching keys in (k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$$

$$w_{i,j} = \sum_{s=i \text{ to } j} p_s + \sum_{t=i-1 \text{ to } j} q_t$$

= sum of the probabilities of keys
(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)

Deciding Root of OBST Lemma: For any $j \ge i$,

$$E_{i,j} = \min_{r} \{ E_{i,r-1} + E_{r+1,j} + w_{i,j} \}$$



17

Deciding Root of OBST

Corollary:

Let r be the parameter that minimizes ${E_{i,r-1} + E_{r+1,j} + w_{i,j}}$

Then the root of the OBST for keys $(k_i, k_{i+1}, ..., k_j; d_{i-1}, d_i, ..., d_j)$ should be set to k_r

Computing E_{i,j}

- Define a function Compute_E(i,j) as follows:
- Compute_E(i, j) /* Finding $E_{i,j}$ */
 - 1. if (i == j+1) return q_j ; /* Exp time with key d_j */ 2. min = ∞ ;
 - 3. for (r = i, i+1, ..., j) {
 g = Compute_E(i,r-1) + Compute_E(r+1,j) + w_{i,j};
 if (g < min) min = g;
 }</pre>
- 4. return min;

Computing E_{i,j}

Question: What is its running time?

• It has a recurrence of the following form :

$$T(i, j) = \sum_{r} T(i, r-1) + \sum_{r} T(r+1, j) + 1$$

 $T(i, i) = 1$

• By substitution, we find $T(i, j) = \Omega(3^{j-i})$ • Compute_E(1,n) takes $\Omega(3^n)$ time

Computing $E_{i,j}$ faster

- Recall that when we use recursion to compute the nth Fibonacci number, it runs in exponential time
- But we can speed it up to O(n) time. Why?
 Key idea : avoid redundant computations
 (by storing computed terms in a table)
- We now apply the same idea to speed up the computation of $\mathsf{E}_{i,j}$

Bottom-Up Approach

- We use a 2D table E to store $E_{i,j}$ once they are computed
- We also use a 2D table W to store w_{i,i}
- The algorithm works as follows :
 - 1. We first compute all entries in W
 - \rightarrow This is done in $O(n^2)$ time (how?)
 - 2. We compute $E_{i,j}$ for j-i = 0,1,2,...,n-1

Bottom-Up Approach

BottomUp_E() /* Finding E_{i,j} */

- 1. Fill all entries of W
- 2. for j = 1, 2, ..., n, set $E[j+1,j] = q_j$;
- 3. for (length = 0, 1, 2, ..., n-1)

Compute E[i,i+length] for all i;

// From W and E[x,y] with |x-y| < length4. return E[1,n];

Running Time = $\Theta(n^3)$

Remarks

- A slight change in the algorithm allows us to get the root of each subtree, and thus the structure of OBST (how?)
- The powerful technique of storing computed terms in a table is called Dynamic Programming
- Knuth observed a further property so that we can compute OBST in O(n²) time (search wiki for more information)