Red Black Tree

A balanced binary search tree



Red Black Tree

. Every node Is either red or black

. For each node, all paths from the node
to descendant leaves contain the
same number of black nodes

. If a node iIs red, then both its children
are black

. The root Is black

. Every dummy leaf is black



Balance




Balance

g N




Notation

e +1 means need one more black for the

node
- et
¢eo ¢eo



Insertion

e Set Inserted node to be red

* Fix the violation of Properties 3 and 4



Insertion

To Insert x:
 Uncleisred (Case 1)

e Uncle is black

— Both x and parent are left (or right) child
(Case 2)

— Others (Case 3)



Insertion

e Case 1: Uncle is red

Recursively
R\A — fix X



Insertion

e Case 2: Uncle is black. Both x and
parent are left (or right) child

K(A . f@f
2 P

P

/6\" —> Complete

/



Insertion

e Case 3: Others

5.
R\A — Case 2



Delete vs Remove

 To delete z, node z may not be
removed In the tree

 Denote y as the removed node

e Let x be the child of y



Deletion

* No violation when the removed node y
IS red

e Otherwise, fix the violation of property 2
and 4



e XIsred (Case 1)

e X IS black
— Sibling is red (Case 2)
— Sibling, denoted as s, Is black

* Both s’s children are black (Case 3)

* The children of s, left are black, right are red
(Case 4)

 Right children of s are red
— Parent are black (Case 5)
— Parent are red (Case 6)




Deletion

e Case 1: xiIsred

& o

Complete



Deletion

e Case 2: Sibling Is red

P N
!

Case 3~6



Deletion

e Case 3: Both sibling’s children are black

2. LS L. |
!

Recursively fix x



Deletion

e Case 4: Sibling’s left child is red, right
child is black

0

Case 5~6



Deletion

e Case 5: Sibling’s right child i1s red

e

Complete



Deletion

e Case 6: Sibling’s right child i1s red

S

Complete



2 colors, why?

e Tree height Is not that tight

e Reduce the cost to balance tree



