
Red Black Tree

A balanced binary search tree

Red Black Tree

1. Every node is either red or black
2. For each node, all paths from the node

to descendant leaves contain the
same number of black nodes

3. If a node is red, then both its children
are black

4. The root is black
5. Every dummy leaf is black

Balance

log n

Balance

2 log n

Notation

• +1 means need one more black for the
node

+1

Insertion

• Set inserted node to be red

• Fix the violation of Properties 3 and 4

Insertion

To insert x:
• Uncle is red (Case 1)
• Uncle is black

– Both x and parent are left (or right) child
(Case 2)

– Others (Case 3)

Insertion

• Case 1: Uncle is red

x x

x
Recursively

fix x

Insertion

• Case 2: Uncle is black. Both x and
parent are left (or right) child

x x

x Complete

+1

Insertion

• Case 3: Others

x

x

x

x

Case 2

Delete vs Remove

• To delete z, node z may not be
removed in the tree

• Denote y as the removed node

• Let x be the child of y

Deletion

• No violation when the removed node y
is red

• Otherwise, fix the violation of property 2
and 4

• x is red (Case 1)
• x is black

– Sibling is red (Case 2)
– Sibling, denoted as s, is black

• Both s’s children are black (Case 3)
• The children of s, left are black, right are red

(Case 4)
• Right children of s are red

– Parent are black (Case 5)
– Parent are red (Case 6)

Deletion

• Case 1: x is red

x+1 x

Complete

Deletion

• Case 2: Sibling is red

x

a b

s+1 x

a b

s+2

s
b

x a+1 x s+1

Case 3~6

Deletion

• Case 3: Both sibling’s children are black

x s+1 x s
+1 x+1

Recursively fix x

Deletion

• Case 4: Sibling’s left child is red, right
child is black

x

a b

s

c d

+1 x

a b

s

c d

+1 x a

b

sc
d

+1 x s

Case 5~6

+1

+1

Deletion

• Case 5: Sibling’s right child is red

x s+1

s

x

Complete

+1
s

x

Deletion

• Case 6: Sibling’s right child is red

x s+1

s

x

Complete

s

x

2 colors, why?

• Tree height is not that tight

• Reduce the cost to balance tree

