Red Black Tree

A balanced binary search tree
Red Black Tree

1. Every node is either red or black
2. For each node, all paths from the node to descendant leaves contain the same number of black nodes
3. If a node is red, then both its children are black
4. The root is black
5. Every dummy leaf is black
Balance

\[\log n \]
Balance

2 log n
Notation

• +1 means need one more black for the node
Insertion

• Set inserted node to be red

• Fix the violation of Properties 3 and 4
Insertion

To insert x:

• Uncle is red (Case 1)

• Uncle is black
 – Both x and parent are left (or right) child (Case 2)
 – Others (Case 3)
Insertion

• Case 1: Uncle is red

Recursively fix x
Insertion

• Case 2: Uncle is black. Both x and parent are left (or right) child

Complete +1
Insertion

• Case 3: Others

Case 2
Delete vs Remove

• To delete z, node z may not be removed in the tree

• Denote y as the removed node

• Let x be the child of y
Deletion

• No violation when the removed node y is red

• Otherwise, fix the violation of property 2 and 4
• x is red (Case 1)
• x is black
 – Sibling is red (Case 2)
 – Sibling, denoted as s, is black
 • Both s’s children are black (Case 3)
 • The children of s, left are black, right are red (Case 4)
 • Right children of s are red
 – Parent are black (Case 5)
 – Parent are red (Case 6)
Deletion

- Case 1: x is red

```
+1  \(\times\)  \(\rightarrow\)  \(\times\)
```

Complete
Deletion

• Case 2: Sibling is red

Case 3~6
Deletion

• Case 3: Both sibling’s children are black

Recursively fix x
Deletion

• Case 4: Sibling’s left child is red, right child is black

Case 5~6
Deletion

• Case 5: Sibling’s right child is red

```
+1 X S
  \   /
   X  S
```

```
S +1
  /
 X
```

```
S
  /
 X
```

Complete
Deletion

- Case 6: Sibling’s right child is red
2 colors, why?

- Tree height is not that tight
- Reduce the cost to balance tree