
1

CS2351
Data Structures

Tutorial 3:
Data Structures for Disjoint Sets

2

About this lecture
• Data Structure for Disjoint Sets

• Support Union and Find operations

• Various Methods:
1. Union by Size
2. Union by Rank
3. Union by Rank + Path Compression

3

Maintaining Disjoint Set

• In some applications, especially in
algorithms relating to graphs, we often
have a set of elements, and want to
maintain a dynamic partition of them
• I.e., the partition changes over time

• Our target corresponds to maintaining
dynamic disjoint sets of the elements

4

Maintaining Disjoint Set
• Let Σ = { S1, S2, …, Sk } be a collection of

dynamic disjoint sets of the elements
• Let x and y be any two elements
• We want to support:

Make-Set(x): create a set containing x
Find(x) : return which set x belongs
Union(x,y) : merge the sets containing x

and containing y into one

5

Example Application:
Finding Connected Components

Step 0: Begin with the input graph

a
b

c d

e
f

g
h

6

Step 1: Make-Set(v) for each vertex v

a
b

c d

e
f

g
h

current Σ: { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:
Finding Connected Components

7

Step 2: Visit each edge (u,v), perform Union(u,v)

a
b

c d

e
f

g
h

current Σ: { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:
Finding Connected Components

8

Step 2: Visit (a,b)

a
b

c d

e
f

g
h

current Σ: { {a,b}, {c}, {d}, {e}, {f}, {g}, {h} }

edge visited

Step 2: Visit (c,d)

a
b

c d

e
f

g
h

current Σ: { {a,b}, {c,d}, {e}, {f}, {g}, {h} }

9

Step 2: Visit (e,f)

a
b

c d

e
f

g
h

current Σ: { {a,b}, {c,d}, {e,f}, {g}, {h} }

edge visited

Step 2: Visit (b,c)

a
b

c d

e
f

g
h

current Σ: { {a,b,c,d}, {e,f}, {g}, {h} }

10

Step 2: Visit (f,g)

a
b

c d

e
f

g
h

current Σ: { {a,b,c,d}, {e,f,g}, {h} }

edge visited

Step 2: Visit (b,d)

a
b

c d

e
f

g
h

current Σ: { {a,b,c,d}, {e,f,g}, {h} }

11

After Step 2 (when all edges visited) :
Each Disjoint Set Connected Component

a
b

c d

e
f

g
h

current Σ: { {a,b,c,d}, {e,f,g}, {h} }

Example Application:
Finding Connected Components

12

Remarks
• To facilitate Find(x), each set usually

chooses one of its element as a
representative

Find(x) returns the representative
element of the set where x belongs

• To check if x and y belong to the same
set, we can just check if

Find(x) == Find(y)

13

Disjoint-Set Forest

• One popular method to maintain disjoint
sets is by a forest

• Each set a separate rooted tree
• Representative root of tree

14

a

b

c d e

f

g

h

Current dynamic sets : { {a,b,c,d}, {e,f,g}, {h} }

Example

15

Disjoint-Set Forest
• To perform Union(x,y), we join the trees

containing x and containing y, by linking
their roots

• E.g. Union(f,h) in previous example gives:

e

f

g

h

16

Disjoint-Set Forest

• Let Hmax = max height of all trees
• In the worst-case:

Make-Set : Θ(1) time
Find or Union : Ο(Hmax) time
m operations on n elements :

worst-case Θ(mn) time

17

Union By Size
• Let us apply a union-by-size heuristic :

To perform Union, we link root of the
smaller tree to root of the larger tree

Hmax = Ο(log n) (how to prove??)

m operations : Θ(m log n) time

18

Union By Rank
• A similar heuristic is called union-by-rank
• Each node keeps track of its rank – an

upper bound on the height of the node
• In a single-node tree (created by Make-Set)

rank of root = 0

To perform Union, we link root with
smaller rank to root with larger rank

19

Union By Rank
• Rank needs not be very accurate

• as long as it always gives an upper
bound of height is enough

• When Union is performed, only the rank
of the roots may change :
• If both roots have same rank

rank of new root increases by 1
• Else, no change

20

Example of Union by Rank

? = rank

a

b

c d e

f

g

Before Union

1

0 0 0

1

0 0

0

After Union(c,f)

a

b

c d

e

f

g

2

0 0 01

0

21

Union By Rank

• Let Hmax = max height of all trees

Hmax = Ο(log n) (how to prove??)

m operations : Θ(m log n) time

• So, union by rank is no better than union
by size, but …

22

Path Compression
• The closer a node to its root, the faster

the Find or Union operation

• When we perform Find(x), we will need to
find the root of the tree containing x

will access every ancestor of x

• why don’t we make all these ancestors
of x closer to the root now?
(Because no increase in asymptotic performance !!!)

23

Example of Path Compression

After Find(x)

x v

u

w

Before Find(x)

x

v

u

w

24

Union by Rank + Path Compression
• If Union(x,y) is always performed by first

Find(x), Find(y), and then linking the roots,
then by combining union-by-rank (at Union)
and path compression (at Find and Union) :

m operations: Θ(mα(n)) time

Inverse Ackermann
(in practice, at most 4)

25

Finding Connected Components

• Recall: To find connected components of
a graph G with n vertices and m edges
• there are n Make-Set and m Find or

Union operations

• Which scheme for dynamic disjoint sets
gives the best running time (theoretically) ?
Ans. Depends on m (why?)

