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CS2351
Data Structures

Tutorial 3:   
Data Structures for Disjoint Sets
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About this lecture 
• Data Structure for Disjoint Sets

• Support Union and Find operations

• Various Methods:
1. Union by Size
2.  Union by Rank 
3.  Union by Rank + Path Compression
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Maintaining Disjoint Set

• In some applications, especially in 
algorithms relating to graphs, we often 
have a set of elements, and want to 
maintain a dynamic partition of them
• I.e., the partition changes over time

• Our target corresponds to maintaining 
dynamic disjoint sets of the elements



4

Maintaining Disjoint Set
• Let Σ = { S1, S2, …, Sk } be a collection of 

dynamic disjoint sets of the elements
• Let x and y be any two elements 
• We want to support:

Make-Set(x):  create a set containing x
Find(x) :          return which set x belongs
Union(x,y) :     merge the sets containing x

and containing y into one
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Example Application:  
Finding Connected Components

Step 0:  Begin with the input graph
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h
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Step 1:  Make-Set(v) for each vertex v

a
b

c d

e
f

g
h

current Σ:  { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:  
Finding Connected Components
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Step 2:  Visit each edge (u,v), perform Union(u,v)

a
b

c d

e
f

g
h

current Σ:  { {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h} }

Example Application:  
Finding Connected Components
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Step 2:  Visit (a,b)

a
b

c d

e
f

g
h

current Σ:  { {a,b}, {c}, {d}, {e}, {f}, {g}, {h} }

edge visited

Step 2:  Visit (c,d)

a
b

c d

e
f

g
h

current Σ:  { {a,b}, {c,d}, {e}, {f}, {g}, {h} }
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Step 2:  Visit (e,f)

a
b

c d

e
f

g
h

current Σ:  { {a,b}, {c,d}, {e,f}, {g}, {h} }

edge visited

Step 2:  Visit (b,c)

a
b

c d

e
f

g
h

current Σ:  { {a,b,c,d}, {e,f}, {g}, {h} }
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Step 2:  Visit (f,g)

a
b

c d

e
f

g
h

current Σ:  { {a,b,c,d}, {e,f,g}, {h} }

edge visited

Step 2:  Visit (b,d)

a
b

c d

e
f

g
h

current Σ:  { {a,b,c,d}, {e,f,g}, {h} }
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After Step 2 (when all edges visited) :
Each Disjoint Set Connected Component

a
b

c d

e
f

g
h

current Σ:  { {a,b,c,d}, {e,f,g}, {h} }

Example Application:  
Finding Connected Components
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Remarks
• To facilitate Find(x), each set usually 

chooses one of its element as a 
representative

Find(x) returns the representative 
element of the set where x belongs 

• To check if x and y belong to the same 
set, we can just check if

Find(x) == Find(y)
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Disjoint-Set Forest

• One popular method to maintain disjoint 
sets is by a forest

• Each set a separate rooted tree
• Representative root of tree
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a

b

c d e

f

g

h

Current dynamic sets :  { {a,b,c,d}, {e,f,g}, {h} }

Example
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Disjoint-Set Forest
• To perform Union(x,y), we join the trees 

containing x and containing y, by linking
their roots

• E.g. Union(f,h) in previous example gives:

e

f

g

h
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Disjoint-Set Forest

• Let Hmax = max height of all trees
• In the worst-case: 

Make-Set :    Θ(1) time
Find or Union :  Ο(Hmax) time
m operations on n elements :  

worst-case Θ(mn) time
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Union By Size
• Let us apply a union-by-size heuristic :

To perform Union, we link root of the 
smaller tree to root of the larger tree 

Hmax = Ο(log n) (how to prove??)

m operations : Θ(m log n) time
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Union By Rank
• A similar heuristic is called union-by-rank
• Each node keeps track of its rank – an 

upper bound on the height of the node
• In a single-node tree (created by Make-Set)

rank of root = 0

To perform Union, we link root with 
smaller rank to root with larger rank 
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Union By Rank
• Rank needs not be very accurate

• as long as it always gives an upper 
bound of height is enough

• When Union is performed, only the rank 
of the roots may change :
• If both roots have same rank    

rank of new root increases by 1
• Else, no change
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Example of Union by Rank

? = rank

a

b

c d e

f

g

Before Union

1

0 0 0

1

0 0

0

After Union(c,f)

a

b
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e

f

g

2

0 0 01

0
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Union By Rank

• Let Hmax = max height of all trees

Hmax = Ο(log n) (how to prove??)

m operations : Θ(m log n) time

• So, union by rank is no better than union 
by size, but …
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Path Compression
• The closer a node to its root, the faster 

the Find or Union operation

• When we perform Find(x), we will need to 
find the root of the tree containing x

will access every ancestor of x 

• why don’t we make all these ancestors 
of x closer to the root now?  
( Because no increase in asymptotic performance !!! )
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Example of Path Compression

After Find(x)

x v

u

w

Before Find(x)

x

v

u

w
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Union by Rank + Path Compression
• If Union(x,y) is always performed by first 

Find(x), Find(y), and then linking the roots, 
then by combining union-by-rank (at Union) 
and path compression (at Find and Union) :

m operations:  Θ(mα(n)) time

Inverse Ackermann
(in practice, at most 4)
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Finding Connected Components

• Recall: To find connected components of 
a graph G with n vertices and m edges 
• there are n Make-Set and m Find or 

Union operations

• Which scheme for dynamic disjoint sets 
gives the best running time (theoretically) ?
Ans. Depends on m  (why?)


