Postfix Expression
Postfix Expression

• Infix expression is the form AOB
 – A and B are numbers or also infix expression
 – O is operator ($+, -, *, /$)

• Postfix expression is the form ABO
 – A and B are numbers or also postfix expression
 – O is operator ($+, -, *, /$)
From Postfix to Answer

- The reason to convert infix to postfix expression is that we can compute the answer of postfix expression easier by using a stack.
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• First, push(10) into the stack
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• Then, push(2) into the stack
From Postfix to Answer

Ex: 10 2 8 * + 3 -

- Push(8) into the stack
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• Now we see an operator *, that means we can get an new number by calculation
From Postfix to Answer

Ex: 10 2 8 * + 3 -

- Now we see an operator *, that means we can get an new number by calculation
- Pop the first two numbers

\[2 \times 8 = 16 \]
From Postfix to Answer

Ex: 10 2 8 * + 3 -

- Now we see an operator *, that means we can get an new number by calculation
- Push the new number back

\[
\begin{array}{c}
16 \\
10
\end{array}
\]

\[
\begin{array}{c}
2 \\
8
\end{array}
\]

\[
\begin{array}{c}
= 16
\end{array}
\]
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• Then we see the next operator + and perform the calculation

10 + 16 = 26
From Postfix to Answer

Ex: 10 2 8 * + 3 -

- Then we see the next operator + and perform the calculation
- Push the new number back

\[10 + 16 = 26 \]
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• We see the next number 3
• Push (3) into the stack
Compute the Answer

Ex: 10 2 8 * + 3 -

• The last operation

26 - 3 = 23
From Postfix to Answer

Ex: 10 2 8 * + 3 -

• The last operation

26 - 3 = 23
answer!
From Postfix to Answer

- Algorithm: maintain a stack and scan the postfix expression from left to right
 - If the element is a number, push it into the stack
 - If the element is a operator O, pop twice and get A and B respectively. Calculate BOA and push it back to the stack
 - When the expression is ended, the number in the stack is the final answer
Transform Infix to Postfix

• Now, we have to design an algorithm to transform infix expression to postfix
Transform Infix to Postfix

• Observation 1: The order of computation depends on the order of operators
 – The parentheses must be added according to the priority of operations.
 – The priority of operator * and / is higher than those of operation + and –
 – If there are more than one equal-priority operators, we assume that the left one’s priority is higher than the right one’s
 • This is called left-to-right parsing.
Transform Infix to Postfix

• Observation 1: The order of computation depends on the order of operators (cont.)
 – For example, to add parentheses for the expression $10 + 2 \times 8 - 3$,
 – we first add parenthesis to 2×8 since its priority is highest in the expression.
 – Then we add parenthesis to $10 + (2 \times 8)$ since the priorities of $+$ and $-$ are equal, and $+$ is on the left of $-$.
 – Finally, we add parenthesis to all the expression and get $((10 + (2 \times 8)) - 3)$.
Transform Infix to Postfix

- Observation 1: The order of computation depends on the order of operators (cont.)
 - The computation order of expression ((10 + (2 * 8)) - 3) is:
 - $2 \times 8 = 16 \Rightarrow (10 + 16) - 3$
 - $10 + 16 = 26 \Rightarrow (26 - 3)$
 - $26 - 3 = 23 \Rightarrow 23$
Transform Infix to Postfix

• Simplify the problem, how if there are only +/- operators?
Transform Infix to Postfix

• Simplify the problem, how if there are only +/- operators?
• The leftmost operator will be done first
 – Ex: $10 - 2 + 3 \rightarrow 8 + 3 \rightarrow 11$
Transform Infix to Postfix

• Simplify the problem, how if there are only +/- operators?
• Algorithm: maintain a stack and scan the postfix expression from left to right
 – When we get a number, output it
 – When we get an operator O, pop the top element in the stack if the stack is not empty and then push(O) into the stack
Transform Infix to Postfix

• Simplify the problem, how if there are only +/- operators?
• Algorithm: maintain a stack and scan the postfix expression from left to right
 – When we get a number, output it
 – When we get an operator O, pop the top element in the stack if the stack is not empty and then push(O) into the stack
 – When the expression is ended, pop all the operators remain in the stack
Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

• We see the first number 10, output it
Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

• We see the first operator +, push(+) into the stack because at this moment the stack is empty

10
Transform Infix to Postfix

Ex: $10 + 2 - 8 + 3$

- We see the number 2, output it

10 2
Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

- We see the operator -, pop the operator + and push(-) into the stack

10 2 +
Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

• We see the number 8, output it.

10 2 + 8
Transform Infix to Postfix

Ex: $10 + 2 - 8 + 3$

• We see the operator $+$, pop the operator $-$ and push($+$) into the stack

10 2 + 8 -
Transform Infix to Postfix

Ex: $10 + 2 - 8 + 3$

- We see the number 3, output it

$10 2 + 8 - 3$
Transform Infix to Postfix

Ex: $10 + 2 - 8 + 3$

• We come to the end of the expression, then we pop all the operators in the stack

$10 \ 2 \ + \ 8 \ - \ 3 \ +$
Transform Infix to Postfix

Ex: 10 + 2 - 8 + 3

• When we get an operator, we have to push it into the stack and pop it when we see the next operator.
• The reason is, we have to “wait” for the second operand of the operator.
Transform Infix to Postfix

• How to solve the problem when there are operators +, -, *, / ?
Transform Infix to Postfix

• Observation 2: scan the infix expression from left to right, if we see higher-priority operator after lower-priority one, we know that the second operand of the lower-priority operator is an expression
 – Ex: \(a + b \times c = a + (b \times c) \rightarrow a b c \times + \)
 – That is, the expression \(b c \times \) is the second operand of the operator “+”
Transform Infix to Postfix

• So, we modify the algorithm to adapt the situation
Transform Infix to Postfix

- Algorithm: maintain a stack and scan the postfix expression from left to right
 - When we get a number, output it
 - When we get an operator O, pop the top element in the stack until there is no operator having higher priority than O and then push(O) into the stack
 - When the expression is ended, pop all the operators remain in the stack
Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

• We see the first number 10, output it
Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

• We see the first operator +, push it into the stack

10

+
Transform Infix to Postfix

Ex: $10 + 2 \times 8 - 3$

- We see the number 2, output it

10 2
Transform Infix to Postfix

Ex: $10 + 2 \times 8 - 3$

- We see the operator \times, since the top operator in the stack, $+$, has lower priority then \times, push(\times)
Transform Infix to Postfix

Ex: $10 + 2 \times 8 - 3$

• We see the number 8, output it

$10 \ 2 \ 8$
Transform Infix to Postfix

Ex: $10 + 2 \times 8 - 3$

- We see the operator $-$, because its priority is lower than \times, we pop. Also, because $+$ is on the left of it, we pop $+$, too. Then we push($-$)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
</tr>
<tr>
<td>$10 2 8 \times +$</td>
</tr>
</tbody>
</table>
Transform Infix to Postfix

Ex: $10 + 2 \times 8 - 3$

- We see the number 3, output it

10 2 8 * + 3
Transform Infix to Postfix

Ex: 10 + 2 * 8 - 3

- Because the expression is ended, we pop all the operators in the stack

```
10 2 8 * + 3 -
```