

Data Structures

Tutorial 1:
Solutions for Assignment 1 & 2

Assignment 1

Question 1
Your friend, John, has given you an array A[1..n] of n

numbers. He told you that there is some i such
that A[1..i] is straightly increasing, and A[i..n] is
straightly decreasing. This implies that A[i] is the
maximum entry in the array.

1. Design an O(log n)-time algorithm to find this
maximum.

2. Explain why it runs in O(log n) time.

3. Briefly show the correctness of your algorithm.

1

Algorithm
Finding_Max(Array A, Left-boundary L, Right-

boundary R)

{

If(L==R) return A[L];

Compare A[(L+R)/2] with A[(L+R)/2 +1])

If A[(L+R)/2] is bigger then

Finding_Max(A, L, (L+R)/2) ;

Else

Finding_Max(A, (L+R)/2 +1, R);

}
2

Time complexity analysis

According to our algorithm, after a round, the size of
the array would become half.

Suppose n=2k, then our algorithm would run k=log n
rounds.

In our algorithm, each round just costs constant time
to do the comparison.

Therefore the time complexity of our algorithm is
clogn=O(log n), where c is a constant.

3

Correctness Proof

In each round of our algorithm, we compare
A[(L+R)/2] with A[(L+R)/2 +1]).

If A[(L+R)/2] is bigger, that means A[(L+R)/2]
and A[(L+R)/2 +1]) are in the straightly
decreasing section.(why?)

Thus, we are sure that the numbers in the
right-hand side of A[(L+R)/2] is impossible
to be the maximum.(why?)

4

Therefore, the maximum must be in the
A[L...(L+R)/2], then we continue to find the
maximum in it.

By the same reason, if A[(L+R)/2] is smaller, the
maximum must be in the A[(L+R)/2 +1…R], then
we continue to find the maximum in it.

Finally, we could find the maximum correctly by
using our algorithm.

5

Question 2 – Bubble Sort

1: for (round j = 1, 2, ..., n – 1) {
2: for (position i = 1, 2, ..., n – j) {
3: if (A[i] > A[i + 1])
4: Swap A[i] with A[i + 1];
5: }
6: if (there is no swapping in a round)
7: Break the for-loop;
8: }

Question 2 – Bubble Sort
● Correctness of bubble sort
● Running time = O(n2)
● Worst-case running time = Ω(n2)
● Running time ≠ Θ(n2)

Question 2 – Bubble Sort
● Prove by induction
● Induction statement

At ith round, the last i numbers are at the
correct positions and are sorted

● After n rounds, the numbers are sorted
● If the algorithm stops before n rounds, then

the numbers are also sorted

Question 2 – Bubble Sort
● Base case

The largest number must be at the rightmost
position after the first round

● Inductive hypothesis
If after ith round, the statement holds, then it
must hold for (i + 1)th round

Question 2 – Bubble Sort
● Wrong proof
● Base case

When input size is 1, the algorithm is correct
● Inductive hypothesis

If the algorithm is correct when input size is k,
then it must be correct when input size is (k + 1)

Question 2 – Bubble Sort
● Correctness of bubble sort
● Running time = O(n2)
● Worst-case running time = Ω(n2)
● Running time ≠ Θ(n2)

Question 2 – Bubble Sort

1: for (round j = 1, 2, ..., n – 1) { O(n)
2: for (position i = 1, 2, ..., n – j) { O(n)
3: if (A[i] > A[i + 1]) O(1)
4: Swap A[i] with A[i + 1]; O(1)
5: }
6: if (there is no swapping in a round) O(1)
7: Break the for-loop; O(1)
8: }
O(n) * O(n) * [O(1) + O(1)] + [O(1) + O(1)] = O(n2)

Question 2 – Bubble Sort
● Correctness of bubble sort
● Running time = O(n2)
● Worst-case running time = Ω(n2)
● Running time ≠ Θ(n2)

Question 2 – Bubble Sort
● Worst-case

A[1] > A[2] > … > A[n]

Running time = (n – 1) + (n – 2) + … + 1
= n (n – 1) / 2 = Ω(n2)

A[1] A[2] A[n-1] A[n]

Question 2 – Bubble Sort

A[1] A[2] A[n-1] A[n]

● Worst-case
A[1] > A[2] > … > A[n]

Running time = (n – 1) + (n – 2) + … + 1
= c

1
 n2 + c

2
 n + c

3
 = Ω(n2)

(c
1
, c

2
 and c

3
 are constants)

Question 2 – Bubble Sort
● Correctness of bubble sort
● Running time = O(n2)
● Worst-case running time = Ω(n2)
● Running time ≠ Θ(n2)

Question 2 – Bubble Sort
● Running time = O(n2)

For every input
● Worst-case running time = Ω(n2)

Only for worst-case
● Running time ≠ Θ(n2)
● Prove by contradiction

Question 2 – Bubble Sort
● Suppose running time = Θ(n2)

Running time = Ω(n2)
● Best-case

A[1] < A[2] < … < A[n]

Running time = O(n)
● Contradiction!

Question 3

• Given an array B[1..n] and number Y, find
the portion B[i..j] such that B[i] + B[i+1]
+ … + B[j] = Y

5 3 8 2 6 1 5 8 1 9B :

Y = 22

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9] B[10]

B[3..7]
Y = 26 No answer

Question 3 Example

5 3 8 2 6 1 5 8 1 9B :

Y = 22

B[1] B[2] B[3] B[4] B[5] B[6] B[7] B[8] B[9] B[10]

B[3..7]
Y = 26 No answer

Intuitive Solution

• List all possible combinations and
compute their summations

Intuitive Solution

• List all possible combinations and
compute their summations
– There are O(n2) combinations

– Computing the summation of each
combination needs O(n) time

– Total time complexity is O(n3)

Intuitive Solution

• List all possible combinations and
compute their summations
– There are O(n2) combinations

– Computing the summation of each
combination needs O(n) time

– Total time complexity is O(n3)

• Correctness?

Observation

• There are some redundant computations

Observation

• There are some redundant computations

5 3 8 2 6 1 5 8 1 9

Observation

• There are some redundant computations

• We can spend only O(1) time to compute
the summation of each combination

5 3 8 2 6 1 5 8 1 9

Observation

• There are some redundant computations

• We can spend only O(1) time to compute
the summation of each combination

• Total time complexity: O(n2)

5 3 8 2 6 1 5 8 1 9

Another Observation

• There are still some redundant
computations

Another Observation

• There are still some redundant
computations

5 3 8 2 6 1 5 8 1 9

> Y

> Y

Another Observation

• There are still some redundant
computations

• We can drop the first number (why?)

5 3 8 2 6 1 5 8 1 9

> Y

> Y

Another Observation

• There are still some redundant
computations

• We can drop the first number (why?)

5 3 8 2 6 1 5 8 1 9

> Y

> Y

Another Observation

• There are still some redundant
computations

• We can drop the first number (why?)
– The portion B[1..i] won’t be the desired one
for any i

5 3 8 2 6 1 5 8 1 9

> Y

> Y

Clever Linear Time Algorithm

• Look at the entries from left to right
• At each time we have a candidate portion B[i..j]

– If the summation of this portion is smaller than Y,
pick up the next entry and add it to the previous
summation, and the candidate portion becomes
B[i..j+1]

– If the summation of this portion is bigger than Y,
drop the first entry of this portion and minus it
from the previous summation, and the candidate
portion becomes B[i+1..j]

• Repeat the procedure until the summation of
B[i..j] is equal to Y, or j = n and the summation
of B[i..j] is smaller than Y

Clever Linear Time Algorithm

• Time complexity:
– Each entry is at most picked up once and
dropped once, so the time complexity is O(n)

Clever Linear Time Algorithm

• Time complexity:
– Each entry is at most picked up once and
dropped once, so the time complexity is O(n)

• Correctness?

Clever Linear Time Algorithm

• Time complexity:
– Each entry is at most picked up once and
dropped once, so the time complexity is O(n)

• Correctness?

• It needs to be prove that we can drop
the first number

Assignment 2

Question 1

Recurrences:
●

– Hint: substitution and recursion tree method
●

– Hint: master theorem
●

– Hint: changing variable

T n=T n /5T 3n/4n

T n=8T n /2n3

T n=8Tnlog n3

T 1=1

Question 1 (a)
● Use substitution method
● Assume T(n) = cn (c is a constant)
● Then T(n) = (19c/20 + 1)n
● By solving (19c/20 + 1)n ≦ cn
● We get c ≧ 20
● Thus, T(n) = Θ(n)

Question 1 (b)
● By master theorem, case 2

● We get T(n) = Θ(n3 log n)

Question 1 (c)
● Let m = log n (n = 2m)
● T(n) = T(2m) = 8T(2m/2) + m3

● Let S(m) = T(2m) = 8S(m / 2) + m3

● S(m) = Θ(m3 log m), by Question 1 (b)
● T(n) = S(m) = Θ((log n)3 log log n)

Question 2
Quick Sort is a very practical algorithm that can sort an array

A[1..n] of n distinct numbers. It works recursively as follows:

QuickSort(Array A, Length n)

{

if (n ≦ 1) return A;

Pick an arbitrary element x from A;

Partition the other elements of A into 2 groups, Asmall and Alarge,
such that Asmall = all elements with value smaller than x ;

Alarge = all elements with value larger than x ;

Use QuickSort to sort Asmall ;

Use QuickSort to sort Alarge ;

return sorted Asmall, followed by x, followed by sorted Alarge;

} 1

1. Show that QuickSort is correct.

2. Show that in the worst case, the running time
of QuickSort is O(n2).

3. The above algorithm assumes that all the
numbers in A are distinct. What will happen if
they may be non-distinct?

4. Briefly explain how to modify the above
algorithm so that it can handle the case where
numbers may not be distinct.

2

Correctness Proof
For each round in the QuickSort algorithm, we will

pick an arbitrary element x from A, then we will put
x in the correct position in A. (why?)

So, after we put every element of A into its correct
position, the array A would be sorted.

3

Worst Case
Suppose A[1…n]={x1,x2,…,xn}, where x1<x2<…<xn.

Assume that, for each round, we always pick the
first x in A and then we partition the other
elements of A into 2 groups, Asmall and Alarge.

How many number of comparison does the
algorithm have?

sol: (n-1)+(n-2)+…+2+1 = n(n-1)/2 =O(n2).

4

3. What will happen if the elements may be non-
distinct in A?

Sol: We would not know how to partition the
elements.

4. How to modify the above algorithm so that it
can handle the case where numbers may not be
distinct?

Sol: We could just distribute the non-distinct
numbers into Asmall group (or Alarge group) when
we partition the elements of A.

5

Question 3

• Given array B[1..n], list the smallest k
numbers in sorted order in O(n + k log n)
time

Question 3 Example

• Given array B[1..n], list the smallest k
numbers in sorted order in O(n + k log n)
time

5 3 8 2 6 1 5 8 1 9

K = 5

Ans: 1 1 2 3 5

Question 3

• Meaning of O(n + k log n) time:
– It means that the time we spend is

O(Max{n, k log n})

Question 3

• Meaning of O(n + k log n) time:
– It means that the time we spend is

O(Max{n, k log n})

– When k is small, the time complexity is O(n)

– When k is large, the time complexity is

O(k log n)

Question 3

• Meaning of O(n + k log n) time:
– It means that the time we spend is

O(Max{n, k log n})

– When k is small, the time complexity is O(n)

– When k is large, the time complexity is O(k
log n)

– Hence, we can’t simply use the comparison
sorting algorithms (why?)

Question 3

• Make the elements in array B to a min
heap by heapify

• Do k extract-min operations

Question 3

• Make the elements in array B to a min
heap by heapify

• Do k extract-min operations

• What is the time complexity?

