Data Structures

Tutorial 1:
Solutions for Assignment 1 & 2



Assignment 1



Question 1

Your friend, John, has given you an array A[l..n] of n
numbers. He told you that there is some i such
that A[l..i] is straightly increasing, and A[i..n] is
straightly decreasing. This implies that A[i] is the
maximum entry in the array.

1. Design an O(log n)-time algorithm to find this
maximum.

2. Explain why it runs in O(log n) time.
3. Briefly show the correctness of your algorithm.



Algorithm

Finding_Max(Array A, Left-boundary L, Right-
boundary R)

{
If(L==R) return A[L];

Compare A[(L+R)/2] with A[(L+R)/2 +1])
If A[(L+R)/2] is bigger then
Finding_Max(A, L, (L+R)/2) ;
Else
Finding_Max(A, (L+R)/2 +1, R);



Time complexity analysis

According to our algorithm, after a round, the size of
the array would become half.

= Suppose n=2k, then our algorithm would run k=log n
rounds.

In our algorithm, each round just costs constant time
to do the comparison.

Therefore the time complexity of our algorithm is
clogn=0O(log n), where c is a constant.



Correctness Proof

In each round of our algorithm, we compare
A[(L+R)/2] with A[(L+R)/2 +1]).

If A[(L+R)/2] is bigger, that means A[(L+R)/2]
and A[(L+R)/2 +1]) are in the straightly
decreasing section.(why?)

Thus, we are sure that the numbers in the
right-hand side of A[(L+R)/2] is impossible
to be the maximum.(why?)



Therefore, the maximum must be in the
A[L...(L+R)/2], then we continue to find the
maximum in it.

By the same reason, if A[(L+R)/2] is smaller, the
maximum must be in the A[(L+R)/2 +1..R], then
we continue to find the maximum in it.

Finally, we could find the maximum correctly by
using our algorithm.



O N H W

—

Question 2 - Bubble Sort

: for (round j=1,2,..,n-1){
for (positioni=1,2, .., n-j){
if (A[i]> A[i +1])
Swap Ali]with A[i + 1];

}

if (there is no swapping in a round)
Break the for-loop;



Question 2 - Bubble Sort

* Correctness of bubble sort
* Running time = O(n?)
» Worst-case running time = Q(n%)

* Running time #z O(n®)



Question 2 - Bubble Sort

* Prove by induction

* Tnduction statement

At ith round, the last i numbers are at the
correct positions and are sorted

* After n rounds, the numbers are sorted

* If the algorithm stops before n rounds, then
the numbers are also sorted



Question 2 - Bubble Sort

* Base case

The largest number must be at the rightmost
position after the first round

* Inductive hypothesis

If after ith round, the statement holds, then it
must hold for (i + 1)th round



Question 2 - Bubble Sort

* Wrong proof

* Base case
When input size is 1, the algorithm is correct
* Inductive hypothesis

If the algorithm is correct when input size is Kk,
then it must be correct when input size is (k + 1)



Question 2 - Bubble Sort

* Correctness of bubble sort
* Running time = O(n?)
» Worst-case running time = Q(n%)

* Running time #z O(n®)



Question 2 - Bubble Sort

1: for (round j=1,2, .., n-1){

2. for (positioni=1,2,..,n-j){

3 if (A[i]> A[i +1])

4. Swap A[i]with A[i +1];

5.}

6: if (there is no swapping in a round)

7 Break the for-loop;
8:}
O(n) * O(n) * [O(1) + O(1)] + [O(1) + O(1)] = O(n*)

O(n)
O(n)
O(1)
O(1)

O(1)
O(1)



Question 2 - Bubble Sort

* Correctness of bubble sort
* Running time = O(n?)
» Worst-case running time = Q(n%)

* Running time #z O(n®)



Question 2 - Bubble Sort

* Worst-case
A[1]> A[2]> .. > A[n]

A

1]

A[2]

.A[n-li

Al[n]

X

]

Running time =(n-1)+(n-2)+ .. +1

=n(n-1)/2=Q(n%




Question 2 - Bubble Sort

* Worst-case
A[1]> A[2]> .. > A[n]

A[l] Al2] .A[n-li A[n]

> ]
Running time =(n-1)+(n-2)+ .. +1
=c n“+c,n+c, =Q(n’)

(c,, ¢, and c, are constants)



Question 2 - Bubble Sort

* Correctness of bubble sort
* Running time = O(n?)
» Worst-case running time = Q(n%)

* Running time # O(n?)



Question 2 - Bubble Sort

* Running time = O(n?)
For every input

* Worst-case running time = Q(n?)
Only for worst-case

* Running time # O(n?)

* Prove by contradiction



Question 2 - Bubble Sort

* Suppose running time = O(n°)
Running time = Q(n?)

* Best-case
All]< A[2] < .. < A[n]
Running time = O(n)

* Contradiction



Question 3

* Given an array B[1..n] and number Y, find
the portion BJi..j] such that B[i] + B[i+1]
+ .. +B[j]=Y

B[1] B[2] B[3]B[4] B[5] B[6]B[7] B[8] B[9] B[10]

B: 538261581029

Y=22 B[3.7]
Y =26 No answer



Question 3 Example

B[1] B[2] B[3]B[4] B[5] B[6]B[7] B[8] B[9] B[10]

B: 538261581029

Y=22 B[3.7]
Y =26 No answer



Intuitive Solution

» List all possible combinations and
compute their summations



Intuitive Solution

» List all possible combinations and
compute their summations
— There are O(n?) combinations

— Computing the summation of each
combination needs O(n) time

— Total time complexity is O(n3)



Intuitive Solution

» List all possible combinations and
compute their summations
— There are O(n?) combinations

— Computing the summation of each
combination needs O(n) time

— Total time complexity is O(n3)
 Correctness?



Observation

« There are some redundant computations



Observation

« There are some redundant computations

538261581)9




Observation

« There are some redundant computations

538261581)9

« We can spend only O(1) time to compute
the summation of each combination



Observation

« There are some redundant computations

538261581)9

« We can spend only O(1) time to compute
the summation of each combination

 Total tfime complexity: O(n?)



Another Observation

 There are still some redundant
computations



Another Observation

 There are still some redundant
computations

538261581)9

>Y
> Y




Another Observation

 There are still some redundant
computations

538261581)9

>Y
> Y

« We can drop the first number (why?)



Another Observation

 There are still some redundant
computations

538261581)9

>Y
> Y

« We can drop the first number (why?)



Another Observation

 There are still some redundant
computations

538261581)9

>Y
> Y

« We can drop the first number (why?)

— The portion B[1..i] won't be the desired one
for any i



Clever Linear Time Algorithm

* Look at the entries from left to right

« At each time we have a candidate portion Bl[i..j]

— If the summation of this portion is smaller than Y,
pick up the next entry and add it to the previous
summation, and the candidate portion becomes
B[i..j+1]

— If the summation of this portion is bigger than 'V,
drop the first entry of this portion and minus it
from the previous summation, and the candidate
portion becomes B[i+l..j]

 Repeat the procedure until the summation of
BP..'] is equal o Y, or j = n and the summation
0 BJ[i..j] is smaller than Y



Clever Linear Time Algorithm

« Time complexity:
— Each entry is at most picked up once and
dropped once, so the time complexity is O(n)



Clever Linear Time Algorithm

« Time complexity:
— Each entry is at most picked up once and
dropped once, so the time complexity is O(n)

« Correctness?



Clever Linear Time Algorithm

« Time complexity:
— Each entry is at most picked up once and
dropped once, so the time complexity is O(n)

« Correctness?

It needs to be prove that we can drop
the first number



Assighnment 2



Question 1

Recurrences:
o T(n)=T(nl5)+T(3n/4)+n
- Hint: substitution and recursion tree method
o T(n)=AT(n/2)+n’

- Hint: master theorem
o T(n)=8T(Vn)+(logn)

- Hint: changing variable
T())=1



Question 1 (a)

* Use substitution method

* Assume T(n) = cn (c is a constant)
* Then T(n) = (19¢/20 + 1)n

* By solving (19¢/20 + 1)n = ¢n

* Wegetc = 20

* Thus, T(n) = O(n)



Question 1 (b)

* By master theorem, case 2

* We get T(n) = O(n3 log n)



Question 1 (¢)

*Letm=logn (n=2m)

* T(n) = T(2m) = 8T(2™2) + m3

e Let S(M) = T(2") = 8S(m / 2) + m?

* S(m) = O(m* log m), by Question 1 (b)
* T(n) = S(m) = ©((log n)3 log log n)



Question 2

Quick Sort is a very practical algorithm that can sort an array
A[l..n] of ndistinct humbers. It works recursively as follows:

QuickSort(Array A, Length n)

{
if (n = 1) return A;

Pick an arbitrary element x from A;

Partition the other elements of A into 2 groups, Ay and Ajq...
such that A, = all elements with value smaller than x ;

Alarge = all elements with value larger than x ;
Use QuickSort to sort A,
Use QuickSort to sort Ay,
return sorted A, followed by x, followed by sorted A,

}



1. Show that QuickSort is correct.

2. Show that in the worst case, the running time
of QuickSort is O(n?).

3. The above algorithm assumes that all the
numbers in A are distinct. What will happen if
they may be non-distinct?

4. Briefly explain how to modify the above
algorithm so that it can handle the case where
numbers may nhot be distinct.



Correctness Proof

For each round in the QuickSort algorithm, we will
pick an arbitrary element x from A, then we will put
X in the correct position in A. (why?)

So, after we put every element of A into its correct
position, the array A would be sorted.



Worst Case

Suppose A[1..n1={X{,X,,...X,}, where x<x,<..<x,.

Assume that, for each round, we always pick the
first x in A and then we partition the other
elements of A into 2 groups, Agyq and Ay

=>How many number of comparison does the
algorithm have?

sol: (n-1)+(n-2)+..+2+1 = n(n-1)/2 =0(n?).



3. What will happen if the elements may be non-
distinct in A?

Sol: We would not know how to partition the
elements.

4. How to modify the above algorithm so that it
can handle the case where numbers may not be
distinct?

Sol: We could just distribute the non-distinct
humbers into A, group (or A, group) when
we partition the elements of A.



Question 3

* Given array B[1..n], list the smallest k
numbers in sorted order in O(n + k log n)
Time



Question 3 Example

* Given array B[1..n], list the smallest k
numbers in sorted order in O(n + k log n)
Time

5 3826158109
K=5h
Ans: 11235



Question 3

* Meaning of O(n + k log n) time:

— It means that the time we spend is
O(Max{n, k log n})



Question 3

* Meaning of O(n + k log n) time:
— It means that the time we spend is
O(Max{n, k log n})
— When k is small, the time complexity is O(nh)
— When k is large, the time complexity is
O(k log n)



Question 3

* Meaning of O(n + k log n) time:

— It means that the time we spend is
O(Max{n, k log n})

— When k is small, the time complexity is O(nh)

— When k is large, the time complexity is O(k
log n)

—Hence, we can't simply use the comparison
sorting algorithms (why?)



Question 3

» Make the elements in array B to a min
heap by heapify
* Do k extract-min operations



Question 3

» Make the elements in array B to a min
heap by heapify

* Do k extract-min operations

» What is the time complexity?



