
1

CS2351
Data Structures

Lecture 8:
Basic Data Structures I

2

• Once we have learnt pointers, we can now
define some basic, but very useful, data
structures

• We will introduce three of them here:
1. List
2. Queue (also called FIFO queue)
3. Stack (also called LIFO queue)

About this lecture

3

List

4

•A list (or linked list) is a data structure
to represent a sequence of items, one
after the other

List

…

A list of people

5

•Each item in the list points at the item
immediately after it

•Usually, we keep an extra pointer, called
head, to point at the first item

List

…

6

•Once the head of a list is known, we can
traverse the list (from the beginning to
the end) in linear time

•Usually, an item in the list is called a node

List

…

7

•In C, we can first define a new type to
represent a node :

Implementing a List in C

struct node {
...
...

} ;

8

•Since each node points to the next one,
so we should have :

Implementing a List in C

struct node {
...
struct node *next ;

} ;

9

•Also, each node may contain some info
•Ex: To represent a list of people, a node

may need to store the name of a person
•In this case, the definition may look like :

Implementing a List in C

struct node {
char name[80];
struct node *next ;

} ;

10

•Once the definition of a node is done, we
can create a list

Implementing a List in C

struct node x, y, *head ;

strcpy(x.name, “John”);
strcpy(y.name, “Mary”);
head = &x; x.next = &y ;
y.next = 0;

head John Mary

11

•Also, we can traverse a list easily

Implementing a List in C

struct node *current ;
current = head ;
while (current != 0)
{

printf(“%s\n”, (*current).name);
current = (*current).next ;

}

head John Mary

12

•Recall that we have written something like

Remark 1

y.next = 0 ;

to specify that y points to nothing
•In C, we often use NULL to replace 0, so

as to show it indeed represents a location
•Then, we will write something like :

y.next = NULL ;

while (current != NULL) { ... }

13

•Recall that we have written something like

Remark 2

current = (*current).next ;

•The right hand side looks clumsy
•In C, we have a shorthand notation ->

(which looks like an arrow) to simply
•Instead of (*current).next, we write

current = current->next ;

•In general, (*ptr).val is exactly ptr->val

14

•Suppose we have a pointer that points at
a node X in the list

•Then, we can easily use this pointer to
insert an extra node after X (How ?)

Insert in a List

…

pointer

15

•Let current be the pointer that specifies
where to insert

•Let y be the extra node to be inserted
•Then, we can perform insert as follows:

Insert in a List

y.next = current->next ;
current->next = &y ;

•Thus, if we know where to insert, only
O(1) time is required !

16

•Similarly, if there is a pointer that points
at a node X, we can delete a node after X

Delete in a List

if (current->next != NULL)
{

current->next
= current->next->next ;

}

•Thus, if we know where to delete, only
O(1) time is required !

17

Q: If we have a pointer that points at X,
can we insert a node before X ?

A: Yes. We traverse from head, until we
find a node Y that points to X in the list
–Y must be the node before X
–After that, we insert an extra node after Y

Q: Then, can we delete a node before X ?
A: Yes. (How ?)

Remarks for List Updates

18

•Insert/delete before a node is tedious
–In the worst case, it takes linear time !

•If we want to support such operations, we
may use doubly linked list, so that each
node has two pointers
–one to previous node, one to next node

Remarks for List Updates

struct node {
...
struct node *prev, *next ;

} ;

19

Queue

20

•A queue is a special kind of list where
insertion is always at the end, and
deletion is always at the front

Queue

…

Deletion always
at the front

Insertion always
at the end

21

Deletion in a Queue

•Since we have the head of a list, we can
perform deletion easily (in O(1) time)

if (head != NULL)
{

head = head->next ;
}

•Here, we assume that in an empty queue,
head is set to NULL

22

Insertion in a Queue
•To speed up the insertion, we will keep an

extra pointer, called tail, that points at
the last item in a queue

•Then, we can insert a node y in O(1) time
without traversing the whole queue :

if (head != NULL)
{

tail->next = &y ;
tail = &y;

}

23

•Because we now maintain both head and
tail pointers, we need to be careful in the
boundary cases (when we insert a node in
an empty queue, or delete the node to
make the queue empty)

•The insert/delete operations in a queue
are often called enqueue/dequeue

•Queue is also known as FIFO (first in
first out) queue

Remarks for Queues

24

•To summarize the above, we may write a
function for enqueue as follows:

Remarks for Queues

void enqueue(struct node **head,
struct node **tail, struct node *y)

{
if ((*head) != NULL) // if not empty
{ (*tail)->next = y ; (*tail) = y; }
else
{ (*head) = (*tail) = y ; }

}

25

Stack

26

•A stack is a special kind of list where
insertion/deletion are always at the end

•Such an end is often called top

Stack

…
Insertion/Deletion
always at the top

27

Deletion in a Stack
•We maintain a pointer, called top, to

points at the top of the stack
•Since after deletion, we need to update

top, each node should point at the
previous node in the stack

•Then deletion is easily done (in O(1) time) :
if (top != NULL) // if not empty
{

top = top->prev ;
}

28

Insertion in a Stack
•Insertion of a node y into the stack is

also easy (done in O(1) time)
y.prev = top ;
top = &y ;

Remarks:
•Insertion/Deletion operations in a stack

are often called Push/Pop
•Stack is also known as LIFO (Last in first

out) queue

29

•In practice, we normally use an array to
represent Queue or Stack

Practical Implementation

Advantage: Each operation is faster
(no need to keep next/prev pointers)

Disadvantage: Wasted space / Overflow

•We will discuss further in the tutorial

