
1

CS2351
Data Structures

Lecture 7:
A Brief Review of Pointers in C

2

•Pointer is a useful object that allows us to
access different places in our memory

•We will review the basic use of pointer
•Usage: Many data structures are dynamic,

and their shapes change from time to time
–The use of pointers allows us to change

the shapes, in a very flexible way

About this lecture

3

•Suppose we have some people, who are
waiting in a line to buy Disneyland tickets

Example: A Dynamic List

…

•But from time to time, these people may
bring in friends to line after them …

4

•To maintain the ordering of the people in
the line, we can obviously use an array

•However, there will be problems …
–“Insertion after”requires O(n) time in the

worst case

•Later, we will study dynamic list
–“Insertion after”can be done in O(1) time

Example: A Dynamic List

5

•Consider an array A with 10 integers

What are Pointers ?

•We can access each entry of A by
specifying its location (Ex: A[3], A[9])

•Also, we can get or modify the content of
an entry (Ex: y = A[3]; A[9] = 113;)

6

•In fact, our memory is just a long array

What are Pointers ?

•Like a normal array, each entry has a
location (or an address), and contains
space for storing data

•To access an entry in our memory, we can
use a pointer to specify its location

…

7

•In C, we declare a pointer using the
following syntax :

What are Pointers ?

int *ptr ;

•The above line declares a variable ptr,
which is used to point at a location in the
memory for storing an integer

•Similarly, we can also do something like :
char *cptr ;

8

•Once we have declared a pointer, we can
do something like :

Pointers in Action

ptr = 0;

•The above line tells ptr to point to the
location 0 in the memory

•This doesn’t seem very useful, since there
is no particular reason why we want to
access location 0 in the memory …

9

Pointers in Action
•As mentioned, our memory is an array
•Each variable that we declare occupies a

certain location in the memory
•Ex : When we declare

int a ;

then a certain part of memory will be
used by a

…
a

10

•In C, the location of a in the memory can
be obtained by &a

•Then we can write something like :

Pointers in Action

which tells ptr to point to the location of
a in the memory

ptr = &a ;

11

•In C, when a pointer ptr points to a
location in the memory, we can get the
value stored in that location by *ptr

Pointers in Action

int a, b, *ptr ;
ptr = &a ;
a = 5 ;
printf(“value pointed by p: %d\n”, *ptr);
a = 8 ;
printf(“value pointed by p: %d\n”, *ptr);

In C, *p is called dereferencing of a pointer ptr

12

•In C, we can also get or modify the content
in the location pointed by a pointer ptr

•The syntax is as follows :

Pointers in Action

b = *ptr ;
*ptr = 15 ;

•The first line changes the content of b to
the content pointed by ptr

•The second line changes the content
pointed by ptr to be 15

13

•What will happen in the following code ?

Pointers in Action

int a, *ptr ;
ptr = &a ;
a = 5 ;
printf(“value pointed by p: %d\n”, *ptr);
*ptr = 15 ;
printf(“value pointed by p: %d\n”, *ptr);
printf(“value stored by a: %d\n”, a);

14

•What will happen in the following code ?

Pointers in Action

int a, b, *ptr ;
a = 5 ; b = 3 ;
ptr = &a ; *ptr = 21 ;
ptr = &b ; *ptr = 15 ;
printf(“value stored by a: %d\n”, a);
printf(“value stored by b: %d\n”, b);

15

•Although *ptr usually refers the content
of the location pointed by ptr, an
exception is during declaration

•The statement :

Remarks

int *ptr = 0 ;

is exactly the same as
int *ptr ;
ptr = 0 ;

16

•In C, each variable has a location in the
memory for storing its content

•It is true even for a pointer variable !!
•What will happen ?

Address of Variable

int a, *ptr = 0 ;
printf(“the value of ptr: %x\n”, ptr);
printf(“address of ptr: %x\n”, &ptr);
ptr = &a ;
printf(“the value of ptr: %x\n”, ptr);
printf(“address of ptr: %x\n”, &ptr);

17

•Each entry in an array also has an address
•What will happen in the following code ?

Address of Variable

int a[10] ;
printf(“address of a[0]: %x\n”, &(a[0]));
printf(“address of a[1]: %x\n”, &(a[1]));

•In fact, the array name is a “constant
pointer”to the location of its first entry
printf(“the value of a: %x\n”, a);

18

•The entries of an array in C occupies
contiguous locations in the memory

•When a pointer points to a certain entry
in an array, we can increment the pointer
to point to the next entry

Pointer Arithmetic

int a[10], *ptr ;
ptr = a ; // same as ptr = &(a[0]);
ptr++ ; // ptr now points at a[1]
ptr = ptr + 1; // ptr now points at a[2]

19

•In fact, we can do more :

Pointer Arithmetic

int a[10], *ptr ;
ptr = a ; // same as ptr = &(a[0]);
ptr = ptr + 3; // ptr now points at a[3]
printf(“a[7] = %d\n”, *(ptr + 4));
// note: ptr still points at a[3]

•Similarly, we can decrement a pointer to
point back to the previous entry

20

•When we add 1 to ptr, the actual value
stored ptr may not be increased by 1
–Reason : this operation is for a change in the

memory location, and the change depends on
the type of thing pointed by ptr

Remarks

int a[10], *ptr = a ;
printf(“value of ptr: %x\n”, ptr);
printf(“value of ptr + 1: %x\n”, ptr + 1);

Note: In a 32-bit machine, the change is 4, since
each integer occupies 4 bytes in the memory

21

•A pointer allows us to access freely any
location in the memory

•However, some part of the memory is
forbidden (ex: it may be running our OS)

•When we try to touch the content in a
forbidden area, segmentation fault occurs

Segmentation Fault

int *ptr = 0 ;
printf(“value of ptr: %x\n”, ptr);
printf(“value pointed by ptr: %d\n”, *ptr);

22

•In C, we are allowed to perform “casting”
to view a variable as a different type
from its declared type

Casting and Bus Error

char a;
int b ;
a = ‘A’;
b = (int) a ; // casting a as int type
printf(“value of b: %d\n”, b);

23

•We can also cast pointers

Casting and Bus Error

char a[4]; int *ptr ;
a[0] = a[1] = a[2] = ‘\0’, a[3]= ‘A’;
ptr = (int *) a ;
printf(“value pointed by ptr: %d\n”, *ptr);

•The above is like :

…
a

…0 0 0 A

24

•However, we need to be very careful …
•What will happen in the following code ?

Casting and Bus Error

char a[4]; int *ptr ;
a[0] = 0, a[1] = 0, a[2]= 0, a[3]= 65;
ptr = (int *) &(a[1]) ;
printf(“value pointed by ptr: %d\n”, *ptr);

•A bus error occurs, because we try to
deference an integer pointer at a location
that is impossible for storing an integer

