
1

CS2351
Data Structures

Lecture 6:
Lower Bound of Comparison Sorts



2

•Lower bound of any comparison sorting
algorithm
–applies to insertion sort, selection sort,

merge sort, heapsort, quicksort, …
–does not apply to counting sort, radix

sort, bucket sort
•Based on Decision Tree Model

About this lecture



3

Comparison Sort
•Comparison sort only uses comparisons

between items to gain information about
the relative order of items

•It’s like the elements are stored in boxes,
and we can only pick two boxes at a time
to compare which one is larger, without
knowing their values

…



4

Worst-Case Running Time
Merge sort and heapsort are the “smartest”

comparison sorting algorithms we have
studied so far:

worst-case running time is (n log n)

Question: Do we have an even smarter
algorithm? Say, runs in (n log n) time?

Answer: No! (main theorem in this lecture)



5

Lower Bound
Theorem: Any comparison sorting algorithm

requires (n log n) comparisons to sort
n distinct items in the worst case

Corollary: Any comparison sorting algorithm
runs in (n log n) time in the worst case

Corollary: Merge sort and Heapsort are
(asymptotically) optimal comparison sorts



6

Proof of Lower Bound
The main theorem only counts comparison

operations, so we may assume all other
operations (such as moving items) are for free

Consequently, any comparison sort can be
viewed as performing in the following way:
1. Continuously gather relative ordering

information between items
2. In the end, move items to correct positions

We use the above view in the proof



7

Decision Tree of an Algorithm
Consider the following algorithm to sort 3

items A, B, and C:

Step 1: Compare A with B
Step 2: Compare B with C
Step 3: Compare A with C

Afterwards, decide the sorting order of
the 3 items



8

•The previous algorithm always use 3
comparisons, and can sort the 3 items

•In particular, the comparisons used in
different inputs (i.e., permutations) can
be captured in a decision tree, as shown
in the next slide:

Decision Tree of an Algorithm



9

A : B

B : C

>

B : C

<

< > ><

result of
decision

decision

A : C A : C A : C A : C

< > < > < > < >

sorting order decided impossible case



10

A cleverer algorithm may sort the 3 items,
sometimes, using at most 2 comparisons:

Step 1: Check if A > B
Step 2: Check if B > C
Step 3: Compare A with C if the result in

Steps 1 and 2 are different

Afterwards, decide the sorting order

•Then, the decision tree becomes …

Decision Tree of an Algorithm



11

A : B

B : C

>

B : C

<

< > ><

result of
decision

decision

A : C A : C

< > < >

sorting order decided



12

Properties of Decision Tree
In general, assume the input has n items
Then, for ANY comparison sort algorithm:

•Each of the n! permutations corresponds
to a distinct leaf in the decision tree

•The height of the tree is the worst-
case # of comparisons for any input

Question: What can be the height of the
decision tree of the cleverest algorithm?



13

Lower Bound on Height
•There are n! leaves [for any decision tree]

•Degree of each node is at most 2
•Let h = node-height of decision tree

So, n! = total # leaves · 2h

 h ¸ log (n!) = log n + log (n-1) + …
¸ log n + …+ log (n/2)
¸ (n/2) log (n/2) = (n log n)

We can also use Stirling’s approximation:
n! = 2n (n/e)n (1+(1/n))



14

Proof of Lower Bound
Conclusion:

worst-case # of comparisons
= node-height of the decision tree
= (n log n) [for any decision tree]

 Any comparison sort, even the cleverest
one, needs (n log n) comparisons in the
worst case


