
CS2351
Data Structures

Lecture 21:
Amortized Analysis



About this lecture
•Given a data structure, amortized analysis

studies in a sequence of operations, the
average time to perform an operation

•Introduce amortized cost of an operation

•Three Methods for the Same Purpose
(1) Aggregate Method
(2) Accounting Method
(3) Potential Method (see textbook)



Super Stack
•Your friend has created a super stack,

which, apart from Push/Pop, supports:

Super-Pop(k): pop top k items

•Suppose Super-Pop never pops more items
than current stack size

•The time for Super-Pop is O(k)
•The time for Push/Pop is O(1)



Super Stack
•Suppose we start with an empty stack, and

we have performed n operations
•But we don’t know the order

Questions:
•Worst-case time of a Super-Pop ?

Ans. O(n) time [why?]
•Total time of n operations in worst case ?

Ans. O(n2) time [correct, but not tight]



Super Stack
•Though we don’t know the order of the

operations, we still know that:
•There are at most n Push/Pop
 Time spent on Push/Pop = O(n)

•# items popped by all Super-Pop cannot
exceed total # items ever pushed into
stack
 Time spent on Super-Pop = O(n)

So, total time of n operations = O(n) !!!



Amortized Cost
•So far, there are no assumptions on n and

the order of operations. Thus, we have:

For any n and any sequence of n operations,
worst-case total time = O(n)

•We can think of each operation performs
in average O(n) / n = O(1) time
 amortized cost = O(1) per operation

(or, each runs in amortized O(1) time)



Amortized Cost
•In general, we can say something like:

• OP1 runs in amortized O(x) time
• OP2 runs in amortized O(y) time
• OP3 runs in amortized O(z) time

Meaning:
For any sequence of operations with

#OP1 = n1, #OP2 = n2, #OP3 = n3,
worst-case total time = O(n1x + n2y + n3z)



Binary Counter
•Let us see another example of

implementing a k-bit binary counter

•At the beginning, count is 0, and the
counter will be like (assume k = 5):

00000

which is the binary representation of the
count



Binary Counter
•When the counter is incremented, the

content will change
•Example: content of counter when:

10100

count = 5

01100

count = 6cost = 2

•The cost of the increment is equal to the
number of bits flipped



Binary Counter
Special case:

When all bits in the counter are 1,
an increment resets all bits to 0

11111

count = MAX

00000

count = 0cost = k

•The cost of the corresponding increment
is equal to k, the number of bits flipped



Binary Counter
•Suppose we have performed n increments

Questions:

•Worst-case time of an increment ?
Ans. O(k) time

•Total time of n operations in worst case ?
Ans. O(nk) time [correct, but not tight]



Binary Counter
Let us denote the bits in the counter by

b0, b1, b2, …, bk-1,
starting from the right

b0b1b2b3b4

Observation:
bi is flipped only once in every 2i increments

Precisely, bi is flipped at xth increment x is divisible by 2i



Amortized Cost
•So, for n increments, the total cost is:

i=0 to k b n / 2i c

· i=0 to k ( n / 2i )  2n

•By dividing total cost with #increments,

 amortized cost of increment = O(1)



Aggregate Method
•The computation of amortized cost of an

operation in super stack or binary counter
follows similar steps:

1. Find total cost (thus, an “aggregation”)
2. Divide total cost by #operations

This method is called Aggregate Method



Accounting Method
•In real life, a bank account

allows us to save our excess
money, and the money can be
used later when needed

•We also have an easy way to
check the savings

•In amortized analysis, the accounting
method is very similar …



Accounting Method
•Each operation pays an amortized cost

• if amortized cost actual cost, we save the
excess in the bank

• Else, we use savings to help the payment
•Often, savings can easily be checked from

the objects in the current data structure

Lemma: For a sequence of operations, if we
have enough to pay for each operation,
total actual cost  total amortized cost



Super Stack (Take 2)

•Recall that apart from Push/Pop,
a super stack, supports:

Super-Pop(k): pop top k items in k time

•Let us now assign the amortized cost for
each operation as follows:

Push = $2
Pop or Super-Pop = $0



Super Stack (Take 2)

Questions:
•Which operation “saves money to the bank”

when performed?

•Which operation “needs money from the
bank”when performed?

•How to check the savings in the bank ?



Super Stack (Take 2)

•Does our bank have enough to pay for
each Super-Pop operation?

Ans. When Super-Pop is performed, each
popped item donates its corresponding
$1 to help the payment

 Enough $$ to pay for each Super-Pop



Super Stack (Take 2)

Conclusion:
•Amortized cost of Push = 2
•Amortized cost of Pop/Super-Pop = 0

Meaning:
For any sequence of operations with
# Push = n1, # Pop = n2, # Super-Pop = n3,

total actual cost 2n1



Binary Counter (Take 2)

•Let us use accounting method to analyze
increment operation in a binary counter,
whose initial count = 0

00000

•We assign amortized cost for
each increment = $2

•Recall: actual cost = #bits flipped



Binary Counter (Take 2)

Observation: In each increment operation,
at most one bit is set from 0 to 1 (whereas
the following bits are set from 1 to 0).

10100

count = 5

01100

count = 6

00100

count = 4

10100

count = 5

E.g.,



Binary Counter (Take 2)
Lemma: Savings = # of 1’s in the counter
Proof: By induction

To show amortized cost = $2 is enough,
•we use $1 to pay for flipping some bit x

from 0 to 1, and store the excess $1

•For other bits being flipped (from 1 to 0),
each donates its corresponding $1

 Enough to pay for each increment



Binary Counter (Take 2)

Conclusion:
•Amortized cost of increment = 2

Meaning:
For n increments (with initial count = 0)

total actual cost 2n

Question: What’s wrong if initial count 0?



Accounting Method (Remarks)

•In contrast to the aggregate method, the
accounting method may assign different
amortized costs to different operations

•Another thing: To help the analysis, we
usually link each excess $ to a specific
object in the data structure (such as an item
in a stack, or a bit in a binary counter)

 called the credit stored in the object


