CS23561
Data Structures

Lecture 2: Growth of Function



About this lecture

* Introduce Asymptotic Notation
- 0(), 0(), (), o(), ()



Dominating Term

Recall that for input size n,
* Insertion Sort ‘s running time is:
An + Bn + C, (A,B,C are constants)
* Merge Sort ‘s running time is:
Dnlogn+En+F, (DEFareconstants)

» To compare their running times for large n,
we can just focus on the dominating term
(the term that grows fastest when n increases)

- An®vs Dnlogn



Dominating Term

» If we look more closely, the leading
constants in the dominating term does not
affect much in this comparison
- We may as well compare n? vs n log n

(instead of An? vs Dnlogn)

» As a result, we conclude that Merge Sort
Is better than Insertion Sort when n is
sufficiently large



Asymptotic Efficiency

* The previous comparison studies the
asymptotic efficiency of two algorithms

* If algorithm P is asymptotically faster than
algorithm Q, P is often a better choice

* To aid (and simplify) our study in the
asymptotic efficiency, we now introduce
some useful asymptotic notation



Big-O notation

Definition: Given a function g(n), we denote
O(g(n)) to be the set of functions

{ f(n) | there exists positive constants
c and n, such that

0 < f(n) < cg(n)
foralln> n, }

Rough Meaning: O(g(n)) includes all functions that
are upper bounded by g(n)



Big-O notation (example)

* 4n € O(bn) [ proofic=1,n>1]

* 4n € O(n) [ proof: c=4,n> 1]

* 4n + 3 € O(n) [ proof: c =5, n > 3]

- nc O(0.001n?) [proofic=1,n>100]
* log, n € O(logn) [ proofic=1,n>1]

* logn € O(log, n) [ proofic=loge, n>1]

Remark: Usually, we will slightly abuse the notation,
and write f(n) = O(g(n)) to mean f(n) € O(g(n))



Big-Omega notation

Definition: Given a function g(n), we denote
Q(g(n)) to be the set of functions

{ f(n) | there exists positive constants
c and n, such that

0 <cg(n) < f(n)
foralln> n, }

Rough Meaning: ()(g(n)) includes all functions that
are lower bounded by g(n)



Big-O and Big-Omega

» Similar to Big-O, we will slightly abuse the
notation, and write f(n) = (2(g(n)) to mean

f(n) € Q(g(n))

Relationship between Big-O and Big-Q :
f(n) = Q(g(n)) < g(n) = O(f(n))



Big-Q2 notation (example)

* Bn = ()(4n) [ proof:c=1,n> 1]

* n=Q(4n) [ proof: c=1/4,n > 1]

* 4n + 3 = Q(n) [ proofic=1,n>1]

» 0.001n2=Q(n) [proofic=1,n>100 ]

* log, n=Q(logn) [ proof:ic=1/loge,n>1]

* logn=Q(log,n) [proofic=1,n>1]



® notation (Big-O n Big-Q)

Definition: Given a function g(n), we denote
®(g(n)) to be the set of functions

{ f(n) | there exists positive constants
C{, C,, and ny such that

0 <c¢y9(n) < f(n) <c,g(n)
foralln> n, }

Meaning: Those functions which can be both upper
bounded and lower bounded by of g(n)



Big-0, Big-Q, and ®

» Similarly, we write f(n) = ®(g(n)) to mean
f(n) € ©(g(n))

Relationship between Big-O, Big-(2, and ©O:

f(n) = ©(g(n))
&

f(n) = €2(g(n)) and f(n) = O(g(n))



® notation (example)

* 4n = O(n) [c;=1,¢c,=4,n>1]
* 4n + 3 = O(n) [¢c;=1,¢c,=5,n>3]
* log,n=0(logn) [c;=1/loge,c,=1,n>1]

* Running Time of Insertion Sort = O(n?)

- If not specified, running time refers to the
worst-case running time

* Running Time of Merge Sort = ©(n log n)



Little-o notation

Definition: Given a function g(n), we denote
o(g(n)) to be the set of functions

{ f(n) @ any positive ¢) there exists
positive copstant n, such that

0 <\f(n) (<) cgn)

forall n> nf }

Note the similarities and differences with Big-O



Little-o (equivalent definition)

Definition: Given a function g(n), o(g(n)) is
the set of functions

{ f(n) | lim,_. (f(n)/g(n))=0]}
Examples:
* 4n = o(n?)
+ n log n = o(nt-000001)

* nlog n=o0(n log? n)




Little-omega notation

Definition: Given a function g(n), we denote
®(g(n)) to be the set of functions

{ f(n) @ any positive ¢) there exists
positive copstant n, such that

0 < §g(n)(<)f(n)

foralln> n) }

Note the similarities and differences with the Big-
Omega definition



Little-omega (equivalent definition)

Definition: Given a function g(n), ®(g(n)) is
the set of functions

{ f(n) | lim,_.. (g(n)/f(n))=0}

Relationship between Little-o and Little-o :
f(n) = o(g(n)) < g(n) = o(f(n))



To remember the notation:
O is like <: f(n) = O(g(n)) means f(n) < cg(n)
Qs like > :  f(n) = Q(g(n)) means f(n) > cg(n)
O®islike=: f(n)= ©(g(n)) < g(n) = 6(f(n))

oislike <:  f(n) = o(g(n)) means f(n) < cg(n)
o is like >:  f(n) = o(g(n)) means f(n) > cg(n)

Note: Not any two functions can be compared
asymptotically (E.g., sinx vs cos x )



What's wrong with it?
Your friend, after this lecture, has tried to
prove 1+2+_ .+ n = O(n)
» His proof is by induction:
* First, 1 = O(n)
- Assume 1+2+..+k = O(n)
+ Then, 1+2+.. +k+(k+1) = O(n) + (k+1)
= O(n) + O(n) = O(2n) = O(n)
So, 1+2+.+n =+ O(n) [where is the bug??]



