
CS2351
Data Structures

Lecture 2: Growth of Function

•Introduce Asymptotic Notation
–(), (), (), (), ()

About this lecture

Recall that for input size n,
•Insertion Sort ’s running time is:

An2 + Bn + C, (A,B,C are constants)

•Merge Sort ’s running time is:
Dn log n + En + F, (D,E,F are constants)

•To compare their running times for large n,
we can just focus on the dominating term
(the term that grows fastest when n increases)

–An2 vs Dn log n

Dominating Term

•If we look more closely, the leading
constants in the dominating term does not
affect much in this comparison
–We may as well compare n2 vs n log n

(instead of An2 vs Dn log n)

•As a result, we conclude that Merge Sort
is better than Insertion Sort when n is
sufficiently large

Dominating Term

•The previous comparison studies the
asymptotic efficiency of two algorithms

•If algorithm P is asymptotically faster than
algorithm Q, P is often a better choice

•To aid (and simplify) our study in the
asymptotic efficiency, we now introduce
some useful asymptotic notation

Asymptotic Efficiency

Definition: Given a function g(n), we denote
(g(n)) to be the set of functions

{ f(n) | there exists positive constants
c and n0 such that

0 · f(n) · c g(n)

for all n ¸ n0 }

Big-O notation

Rough Meaning: (g(n)) includes all functions that
are upper bounded by g(n)

•4n 2(5n) [proof: c = 1, n ¸ 1]
•4n 2(n) [proof: c = 4, n ¸ 1]
•4n + 3 2(n) [proof: c = 5, n ¸ 3]
•n 2(0.001n2) [proof: c = 1, n ¸ 100]
•loge n 2(log n) [proof: c = 1, n ¸ 1]
•log n 2(loge n) [proof: c = log e, n ¸ 1]
Remark: Usually, we will slightly abuse the notation,

and write f(n) = (g(n)) to mean f(n) 2(g(n))

Big-O notation (example)

Definition: Given a function g(n), we denote
(g(n)) to be the set of functions

{ f(n) | there exists positive constants
c and n0 such that

0 · c g(n) · f(n)

for all n ¸ n0 }

Big-Omega notation

Rough Meaning: (g(n)) includes all functions that
are lower bounded by g(n)

•Similar to Big-O, we will slightly abuse the
notation, and write f(n) = (g(n)) to mean
f(n) 2 (g(n))

Relationship between Big-O and Big-:

f(n) = (g(n))  g(n) = (f(n))

Big-O and Big-Omega

•5n = (4n) [proof: c = 1, n ¸ 1]

•n = (4n) [proof: c = 1/4, n ¸ 1]

•4n + 3 = (n) [proof: c = 1, n ¸ 1]

•0.001n2 = (n) [proof: c = 1, n ¸ 100]

•loge n = (log n) [proof: c = 1/log e, n ¸ 1]

•log n = (loge n) [proof: c = 1, n ¸ 1]

Big-notation (example)

Definition: Given a function g(n), we denote
(g(n)) to be the set of functions

{ f(n) | there exists positive constants
c1, c2, and n0 such that

0 · c1 g(n) · f(n) · c2 g(n)

for all n ¸ n0 }

notation (Big-O \ Big-)

Meaning: Those functions which can be both upper
bounded and lower bounded by of g(n)

•Similarly, we write f(n) = (g(n)) to mean
f(n) 2 (g(n))

Relationship between Big-O, Big-, and :

f(n) = (g(n))


f(n) = (g(n)) and f(n) = (g(n))

Big-O, Big-, and 

•4n = (n) [c1 = 1, c2 = 4, n ¸ 1]

•4n + 3 = (n) [c1 = 1, c2 = 5, n ¸ 3]

•loge n = (log n) [c1 = 1/log e, c2 = 1, n ¸ 1]

•Running Time of Insertion Sort = (n2)
–If not specified, running time refers to the

worst-case running time

•Running Time of Merge Sort = (n log n)

notation (example)

Definition: Given a function g(n), we denote
(g(n)) to be the set of functions

{ f(n) | for any positive c, there exists
positive constant n0 such that

0 · f(n) c g(n)

for all n ¸ n0 }

Little-o notation

Note the similarities and differences with Big-O

Definition: Given a function g(n), (g(n)) is
the set of functions

{ f(n) | limn!1 (f(n)/g(n)) = 0 }

Little-o (equivalent definition)

Examples:
•4n = (n2)

•n log n = (n1.000001)

•n log n = (n log2 n)

Definition: Given a function g(n), we denote
(g(n)) to be the set of functions

{ f(n) | for any positive c, there exists
positive constant n0 such that

0 · c g(n) f(n)

for all n ¸ n0 }

Little-omega notation

Note the similarities and differences with the Big-
Omega definition

Definition: Given a function g(n), (g(n)) is
the set of functions

{ f(n) | limn!1 (g(n)/f(n)) = 0 }

Little-omega (equivalent definition)

Relationship between Little-o and Little-:

f(n) = (g(n))  g(n) = (f(n))

To remember the notation:

is like · : f(n) = (g(n)) means f(n) · cg(n)

is like ¸ : f(n) = (g(n)) means f(n) ¸ cg(n)

is like = : f(n) = (g(n))  g(n) = (f(n))

is like : f(n) = (g(n)) means f(n) cg(n)

is like : f(n) = (g(n)) means f(n) cg(n)

Note: Not any two functions can be compared
asymptotically (E.g., sin x vs cos x)

Your friend, after this lecture, has tried to
prove 1+2+…+ n = (n)

•His proof is by induction:
•First, 1 = (n)

•Assume 1+2+…+k = (n)

•Then, 1+2+…+k+(k+1) = (n) + (k+1)

= (n) + (n) = (2n) = (n)

So, 1+2+…+n = + (n) [where is the bug??]

What’s wrong with it?

