CS2351 Data Structures

Lecture 17: Hashing I

1

About this lecture

- The Hashing Problem
- Hash with Chaining
- Hash with Open Addressing
- Choosing a good Hash Function
 ** Universal Hash Function

The Hashing Problem

- Let U = { 1, 2, ..., u } be a universe
 S = n distinct keys chosen from U
- The Hashing Problem :

To store S such that the following operations can be done efficiently : Search(x, S) : Is x in S ? Insert(x, S) : Insert x to S Delete(x) : Delete x from S

- Solution 1: Use a balanced BST
 Operation time : O(log n)
 Space : O(n)
- Solution 2: Use an O(u)-size array
 Operation time : O(1)
 Space : O(u)

Question:

Can we have a solution that has the benefits of both ? That is, with Operation time : O(1)Space : O(n) words

Answer:

Yes, if we allow operation time to be "average case" instead of "worst case"

- To control the space, we use a hash table T of size m (m is often set to ⊕(n))
- Next, we create a hash function h
 - which maps each integer in U to some integer in [1, m]
 - E.g., $h(x) = x^2 + 3x \mod m$
- Using the hash function, each key will be mapped to some entry in the table

Hash Function

- In an ideal case, all keys are mapped to distinct entries in T
 - \rightarrow Search is performed in O(1) time !
- In general, an entry may correspond to more than 1 key → Collision occurs
- Two common ways to handle collision
 - Chaining
 - Open Addressing

Remark

- Hashing has many applications
- E.g., Our web browser (IE/Firefox) will automatically keep the accessed web pages in the hard-disk

Then if we try to visit a web page that is accessed before, it becomes faster

How can our browser know if a web page was accessed before ?

Hash with Chaining

Chaining

 Chaining stores all the keys mapped to the same entry by a linked list

Chaining

- Insertion can be done in O(1) time (why?)
- How about search or delete ?

Performance of Chaining

- Recall that the hash table T has m entries, and there are n keys
- We define load factor α = n/m
 - average # keys per entry
- The worst case of search or delete is
 O(n) time (if all keys are in the same entry)
- How about the average case ?

Performance of Chaining

- To analyze the average case, we use the simple uniform hashing assumption :
 - 1. Each element of U is equally likely to be mapped into any of the m entries
 - 2. Also, it is independent of where any other element is mapped to
- Next, we analyze search and delete

Unsuccessful Search

- Suppose we search for x which is not in S
- Then, we will compute h(x), access the entry h(x) in the table, and traverse all the keys mapped to that entry
 - → Search time
 - = $\Theta(1)$ + $\Theta(\# \text{ of keys traversed})$
- Let n_r be the number of keys in entry r $\rightarrow n = n_1 + n_2 + ... + n_m$

Unsuccessful Search

Theorem:

The expected time for an unsuccessful search is $\Theta(1+\alpha)$

Proof:

The value h(x) has equal chance to be any number in [1,m] (why?)

→ Expected search time = $\Theta(1) + \Theta((n_1 + n_2 + ... + n_m) / m) = \Theta(1+\alpha)$

- Suppose we search for x which is in S
- Then, we will compute h(x), access the entry h(x), and traverse the keys mapped to that entry as soon as x is found
 - Search time
 - = $\Theta(1)$ + $\Theta(\# \text{ of keys traversed})$
- Let n_r be the number of keys in entry r $\rightarrow n = n_1 + n_2 + ... + n_m$

Theorem: Assuming that each key in S has equal chance to be searched The expected time for a successful search is $\Theta(1+\alpha)$

- Though it has the same expected time as an unsuccessful search, the analysis is very different
- It is because each entry of the table is not equally likely to be searched

Proof:

- We first ignore the $\Theta(1)$ time to compute h(x) and access the entry
- Expected Search Time
- $= E[(1/n)(1 + 2 + ... + n_1 +$
 - $1 + 2 + ... + n_2 + ... + 1 + 2 + ... + n_m)$
- = $(m/n) E[n_1(n_1 + 1)/2]$ (by symmetry)
- $= (m/(2n)) E[n_1^2] + (1/2)$

Proof (cont) :

- It remains to compute $E[n_1^2]$. Recall that the value n_1 counts how many of the n keys are mapped to entry 1
- → This can be expressed as

 $n_{1} = Y_{1} + Y_{2} + ... + Y_{n}$ where $Y_{j} = 1$ if key j is in entry 1, and $Y_{j} = 0$ otherwise

```
Proof (cont):
\rightarrow E[n_1^2] = E[(Y_1 + Y_2 + ... + Y_n)^2]
              = E[Y_1^2 + Y_2^2 + ... + Y_n^2 +
                    Y_1Y_2 + Y_1Y_3 + ... + Y_1Y_n +
                    ... +
                    Y_{n}Y_{1} + Y_{n}Y_{2} + ... + Y_{n}Y_{n-1}]
              = n E[Y_1^2] + n(n-1) E[Y_1Y_2]
              = n/m + n(n-1)/m^2
```

Proof (cont):

- Combining everything, and adding back the $\Theta(1)$ time to compute h(x) and access entry, we have :
- Expected Search Time
- $= \Theta(1) + (m/(2n)) E[n_1^2] + (1/2)$
- $= \Theta(1) + (m/(2n)) (n/m + n(n-1)/m^2) + (1/2)$
- $= \Theta(1) + 1 + (n-1)/(2m) = \Theta(1+\alpha)$

Remark 1

- In both cases, search time is $\Theta(1+\alpha)$
- Deletion is done by search and delete

 \rightarrow expected time is $\Theta(1+\alpha)$

- If m is set to $\Theta(n)$
 - Space of hash table $T = \Theta(n)$
 - Expected time for each operation = $\Theta(1)$

Remark 2

- Our analysis for successful search time is different from that in the textbook
 - Though the value obtained is exactly the same
 - See the textbook for a reference
- In fact, we can use the same analysis technique to obtain the average running time for bucket sort (See Notes 5)

Hash with Open Addressing

Open Addressing

- In open addressing, each entry of the hash table contains to at most 1 key
 → load factor is at most 1
- When inserting a key k, we use k to compute a sequence of entries to check, until we get an empty entry to store k
- The hash function h now contains two parameters : (1) the key, and (2) the sequence number

Open Addressing

• The insertion procedure is as follows :

- We often require h(k, 0), h(k, 1), ... to be a permutation of 1, 2, ..., m
 - Allows all entries of T to be used

Open Addressing

- We assume that no delete is allowed
- In that case, search can be done in the same way as we insert
 - To search for x, we repeatedly try the entries h(k, j), for j = 0, 1, 2, ...
 - We stop when we have found x or when we hit an empty entry
- What is the average insert/search time?

A Useful Formula

Lemma: Let X be a random variable that takes on non-negative integral values. Then,

$$\mathsf{E}[\mathsf{X}] = \sum_{i=1,2,\dots} \mathsf{Pr}(\mathsf{X} \ge \mathsf{i})$$

 $\begin{array}{l} \text{Proof:} \\ \Sigma_{i=1,2,...} \operatorname{Pr}(X \geq i) &= \Sigma_{i=1,2,...} \Sigma_{j=i,i+1,...} \operatorname{Pr}(X = j) \\ &= \Sigma_{j=1,2,...} \Sigma_{i=1,2,...,j} \operatorname{Pr}(X = j) \\ &= \Sigma_{j=1,2,...} j \operatorname{Pr}(X = j) = \operatorname{E}[X] \end{array}$

Performance of Open Addressing

- To analyze the average case, we use the uniform hashing assumption :
 - 1. The function h(k, j) produces a random permutation of 1, 2, ..., m
 - 2. Also, each permutation is equally likely to be produced
- Consequently, h(k,0) has 1/m chance to be in any entry. Then h(k,1) has 1/(m-1) chance to be in any other entry apart from h(k,0), and so on ...

Unsuccessful Search

Theorem:

The expected time for an unsuccessful search is $O(1/(1-\alpha))$, where $\alpha = n/m$

Proof: Let X = # entries examined $Pr(X \ge 1) = 1, Pr(X \ge 2) = n/m = \alpha$ $Pr(X \ge 3) = n/m \times (n-1)/(m-1) \le \alpha^{2}$ $Pr(X \ge i) = n/m \times ... \times (n-i+2)/(m-i+2) \le \alpha^{i-1}$ $\Rightarrow E[X] = \sum Pr(X \ge i) \le 1 + \alpha + \alpha^{2} + ... = 1/(1-\alpha)$

Insertion

Theorem:

Assume we never insert a key twice in S. The expected time for an insertion is $O(1/(1-\alpha))$, where $\alpha = n/m$

Proof:

Insertion requires an unsuccessful search followed by placing the key to the first empty entry

→ Same time as unsuccessful search

Theorem:

Assuming that each key in S has equal chance to be searched The expected time for a successful search is O((1/ α) log { 1/(1- α) })

Proof:

Expected time to search the $(j+1)^{th}$ inserted key = 1/(1-j/m) = m/(m-j) (why?)

Proof (cont):

- Expected Search Time
- $= 1/n \times (m/m + m/(m-1) + ... + m/(m-n+1))$
- $= m/n \times (1/m + 1/(m-1) + ... + 1/(m-n+1))$
- = $m/n \times O(\log m \log (m-n))$ [harmonic sum]
- $= m/n \times O(\log \{ 1/(1 n/m) \})$
- = $1/\alpha \times O(\log \{ 1/(1-\alpha) \})$