CS23561
Data Structures

Lecture 17:
Hashing I

About this lecture

* The Hashing Problem
* Hash with Chaining
ash with Open Addressing

The Hashing Problem

Hashing Problem

- LetU={1,2, .., u}beauniverse
S = n distinct keys chosen from U
» The Hashing Problem :

To store S such that the following
operations can be done efficiently :

Search(x,S): IsxinS?
Insert(x,S): Insertxto$S
Delete(x) : Delete x from S

Hashing Problem

e Solution 1: Use a balanced BST
Operation time : O(log n)
Space : O(n)

* Solution 2: Use an O(u)-size array
Operation time : O(1)
Space : O(u)

Hashing Problem

Question:

Can we have a solution that has the
benefits of both ? That is, with

Operation time : O(1)
Space : O(n) words

Answer :

Yes, if we allow operation time to be
“average case" instead of "worst case”

Hashing Problem

* To control the space, we use a hash
table T of size m (m is often set to ®(n))

* Next, we create a hash function h

» which maps each integer in U to
some integer in [1, m]

* E.g., h(x)=x%+ 3xmod m

» Using the hash function, each key will
be mapped to some entry in the table

v

Hash Function

Hashing Problem

* Inan ideal case, all keys are mapped to
distinct entries in T

= Search is performed in O(1) time |

* In general, an entry may correspond to
more than 1 key = Collision occurs

» Two common ways to handle collision
* Chaining
* Open Addressing

Remark

 Hashing has many applications

* E.g., Our web browser (IE/Firefox) will
automatically keep the accessed web
pages in the hard-disk

Then if we try to visit a web page that
IS accessed before, it becomes faster

How can our browser know if a web
page was accessed before ?

10

Hash with Chaining

11

Chaining

* Chaining stores all the keys mapped to
the same entry by a linked list

12

Chaining

« Insertion can be done in O(1) time (why?)
« How about search or delete ?

13

Performance of Chaining

Recall that the hash table T has m
entries, and there are n keys

We define load factor o = n/m
* average # keys per entry

The worst case of search or delete is
O(n) time (if all keys are in the same entry)

How about the average case ?

14

Performance of Chaining

To analyze the average case, we use the
simple uniform hashing assumption :

1. Each element of U is equally likely to
be mapped into any of the m entries

2. Also, it is independent of where any
other element is mapped to

Next, we analyze search and delete

15

Unsuccessful Search

» Suppose we search for x which is not in S

» Then, we will compute h(x), access the
entry h(x) in the table, and traverse all
the keys mapped to that entry

=>» Search time
= O(1) + O(# of keys traversed)

 Let n.be the number of keys in entry r
2 n=n+n,+ .. +n,

16

Unsuccessful Search

Theorem:

The expected time for an unsuccessful
search is O(1+a)

Proof:

The value h(x) has equal chance to be
any humber in [1,m] (why?)

=> Expected search time
=) +6((n+n,+ .. +n_)/ m) = 6(l+a)

17

Successful Search

» Suppose we search for x which isin S

» Then, we will compute h(x), access the
entry h(x), and traverse the keys mapped
to that entry as soon as x is found

=>» Search time
= O(1) + O(# of keys traversed)

 Let n.be the number of keys in entry r
2 n=n+n,+ .. +n,

18

Successful Search

Theorem: Assuming that each key in S has
equal chance to be searched

The expected time for a successful
search is O(1+a)

* Though it has the same expected time as
an unsuccessful search, the analysis is
very different

» It is because each entry of the table is
not equally likely to be searched

19

Successful Search

Proof :

We first ignore the ©(1) time to compute
h(x) and access the entry

Expected Search Time
=E[(1/n)(1+2+ .. +ng+

1+2+ +n,+ .. +1+2+ +n_)]
=(m/n) E[n;(ny+1)/2] (by symmetry)
= (m/(2n)) E[n2]+ (1/2)

20

Successful Search

Proof (cont):
It remains to compute E[n2].

Recall that the value n, counts how many
of the n keys are mapped to entry 1

=> This can be expressed as
n=Y{+Y,+.+Y,
where Y= 1 if key jisinentry1, and
Y;=0 otherwise

21

Successful Search

Proof (cont):
D> E[NPI=E[(Y +Y,+..+Y,)°]
- E[y12 + y22 + ...t yn2+
Y Y, + Y Y3+ .+ VY, +
+

YY+Y Yo+ +Y. Y,]
=nE[Y]+ n(n-1) E[Y,Y,]
= n/m+ n(n-1)/m?

22

Successful Search

Proof (cont) :

Combining everything, and adding back

the ©(1) time to compute h(x) and access
entry, we have :

Expected Search Time

= 0(1) + (m/(2n)) E[n2] + (1/2)

= 0(1) + (m/(2n)) (n/m+ n(n-1)/m2) + (1/2)
=0(1)+1+(n-1)/(2m) = O(1+a)

23

Remark 1

« In both cases, search time is ©(1+a)
 Deletion is done by search and delete

> expected time is ©(1+a)
+ If mis set to ©(n)

» Space of hash table T = ®(n)

* Expected time for each operation = ©(1)

24

Remark 2

* Our analysis for successful search time is
different from that in the textbook

* Though the value obtained is exactly
the same

» See the textbook for a reference

* In fact, we can use the same analysis
technique to obtain the average running
time for bucket sort (See Notes 5)

25

Hash with Open Addressing

26

Open Addressing

* In open addressing, each entry of the
hash table contains to at most 1 key

=> load factor is at most 1

» When inserting a key k, we use k to
compute a sequence of entries to check,
until we get an empty entry to store k

* The hash function h now contains two
parameters : (1) the key, and (2) the
sequence number

27

Open Addressing

» The insertion procedure is as follows :

1. j=0;

2. while entry h(k, j) is not empty
increase j by 1.

3. Insert key k at the entry h(k, j)

« We often require h(k, 0), h(k, 1), ... to
be a permutation of 1, 2, ..., m

=> Allows all entries of T to be used

28

Open Addressing

« We assume that no delete is allowed

 In that case, search can be done in the
same way as we insert

» To search for x, we repeatedly try
the entries h(k, j), for j=0,1, 2, ..

» We stop when we have found x or
when we hit an empty entry

» What is the average insert/search time?

29

A Useful Formula

Lemma: Let X be a random variable that

takes on non-negative integral values.
Then,

1°°°

Proof:
Zi-12, Pr(X>10) =2ip Zjjjg Pr(X =)
= 2iz12, Zie12, Pr(X =)

= 212, P'”(X J) = E[X]

30

A Useful Formula (2" proof)
2z, Pr(X >)

=1, -
A
sums up

Pr(X>3)
. T T
Pr(X>1) —
t ot ’
Pr(X=1)] 3*Pr(X=$?ﬂ sums up E[X]

2*Pr(X=2) 4*Pr(X=4) a1

Performance of Open Addressing

* To analyze the average case, we use the
uniform hashing assumption :

1. The function h(k, j) produces a
random permutation of 1, 2, ..., m

2. Also, each permutation is equally
likely to be produced

 Consequently, h(k,0) has 1/m chance to be in any entry.
Then h(k,1) has 1/(m-1) chance to be in any other

entry apart from h(k,0), and so on

Unsuccessful Search

Theorem:

The expected time for an unsuccessful
search is O(1/(1-a)), where o = n/m

Proof: Let X = # entries examined
Pr(X>1)=1, Pr(X>2)=n/m=«
Pr(X > 3) = n/m x (n-1)/(m-1) < a?
Pr(X>1) =n/m x .. x (n-i+2)/(m-i+2) < o'
= E[X]=2Pr(Xzi)<1l+a+a+ .. =1/(1- a)

Insertion

Theorem:
Assume we never insert a key twice in S.

The expected time for an insertion is
O(1/(1-a)), where o. = n/m

Proof:

Insertion requires an unsuccessful search
followed by placing the key to the first
empty entry

= Same time as unsuccessful search

34

Successful Search

Theorem:

Assuming that each key in S has equal
chance to be searched

The expected time for a successful search
is O((1/a)log{1/(1-a0) })

Proof:

Expected time to search the (j+1)™
inserted key = 1/(1-j/m) = m/(m-j) (why?)

35

Successful Search

Proof (cont):

Expected Search Time
=1/n x(m/m+m/(m-1) + .. + m/(m-n+1))
=m/nx (1/m+1/(m-1) + ... + 1/(m-n+1))

=m/n x O(
=m/n x O(
=1/a x O(

og m - log (m-n)) [harmonic sum]
og{1/(1-n/m)})
og{1/(1-a)})

36

