
1

CS2351
Data Structures

Lecture 17:
Hashing I

2

•The Hashing Problem
•Hash with Chaining
•Hash with Open Addressing

•Choosing a good Hash Function
** Universal Hash Function

About this lecture

3

The Hashing Problem

4

Hashing Problem
•Let U = { 1, 2, …, u } be a universe

S = n distinct keys chosen from U
•The Hashing Problem :

To store S such that the following
operations can be done efficiently :

Search(x, S) : Is x in S ?
Insert(x, S) : Insert x to S
Delete(x) : Delete x from S

5

Hashing Problem
•Solution 1: Use a balanced BST

Operation time : O(log n)
Space : O(n)

•Solution 2: Use an O(u)-size array
Operation time : O(1)
Space : O(u)

6

Hashing Problem
Question:

Can we have a solution that has the
benefits of both ? That is, with

Operation time : O(1)
Space : O(n) words

Answer :
Yes, if we allow operation time to be
“average case”instead of “worst case”

7

Hashing Problem
•To control the space, we use a hash

table T of size m (m is often set to (n))

•Next, we create a hash function h
•which maps each integer in U to

some integer in [1, m]
•E.g., h(x) = x2 + 3x mod m

•Using the hash function, each key will
be mapped to some entry in the table

8

Hash Function

U

S

T

9

Hashing Problem
•In an ideal case, all keys are mapped to

distinct entries in T
 Search is performed in O(1) time !

•In general, an entry may correspond to
more than 1 key  Collision occurs

•Two common ways to handle collision
•Chaining
•Open Addressing

10

Remark
•Hashing has many applications
•E.g., Our web browser (IE/Firefox) will

automatically keep the accessed web
pages in the hard-disk
Then if we try to visit a web page that
is accessed before, it becomes faster

How can our browser know if a web
page was accessed before ?

11

Hash with Chaining

12

Chaining
•Chaining stores all the keys mapped to

the same entry by a linked list

U

S

T

13

Chaining
•Insertion can be done in O(1) time (why?)

•How about search or delete ?

U

S

T

14

Performance of Chaining
•Recall that the hash table T has m

entries, and there are n keys
•We define load factor = n/m
•average # keys per entry

•The worst case of search or delete is
O(n) time (if all keys are in the same entry)

•How about the average case ?

15

Performance of Chaining
•To analyze the average case, we use the

simple uniform hashing assumption :

1. Each element of U is equally likely to
be mapped into any of the m entries

2. Also, it is independent of where any
other element is mapped to

•Next, we analyze search and delete

16

Unsuccessful Search
•Suppose we search for x which is not in S
•Then, we will compute h(x), access the

entry h(x) in the table, and traverse all
the keys mapped to that entry
 Search time

= (1) + (# of keys traversed)

•Let nr be the number of keys in entry r
 n = n1 + n2 + …+ nm

17

Unsuccessful Search
Theorem:

The expected time for an unsuccessful
search is (1+)

Proof:

The value h(x) has equal chance to be
any number in [1,m] (why?)

 Expected search time
= (1) + ((n1 + n2 + …+ nm) / m) = (1+)

18

Successful Search
•Suppose we search for x which is in S
•Then, we will compute h(x), access the

entry h(x), and traverse the keys mapped
to that entry as soon as x is found
 Search time

= (1) + (# of keys traversed)

•Let nr be the number of keys in entry r
 n = n1 + n2 + …+ nm

19

Successful Search
Theorem: Assuming that each key in S has

equal chance to be searched
The expected time for a successful
search is (1+)

•Though it has the same expected time as
an unsuccessful search, the analysis is
very different

•It is because each entry of the table is
not equally likely to be searched

20

Successful Search
Proof :

We first ignore the (1) time to compute
h(x) and access the entry
Expected Search Time
= E[(1/n)(1 + 2 + …+ n1 +

1 + 2 + …+ n2 + …+ 1 + 2 + …+ nm)]
= (m/n) E[n1 (n1 + 1)/2] (by symmetry)
= (m/(2n)) E[n1

2] + (1/2)

21

Successful Search
Proof (cont) :

It remains to compute E[n1
2] .

Recall that the value n1 counts how many
of the n keys are mapped to entry 1
 This can be expressed as

n1 = Y1 + Y2 + …+ Yn

where Yj = 1 if key j is in entry 1, and
Yj = 0 otherwise

22

Successful Search
Proof (cont) :
 E[n1

2] = E[(Y1 + Y2 + …+ Yn)2]
= E[Y1

2 + Y2
2 + …+ Yn

2 +
Y1Y2 + Y1Y3 + …+ Y1Yn +
…+
YnY1 + YnY2 + …+ YnYn-1]

= n E[Y1
2] + n(n-1) E[Y1Y2]

= n/m + n(n-1)/m2

23

Successful Search
Proof (cont) :

Combining everything, and adding back
the (1) time to compute h(x) and access
entry, we have :
Expected Search Time
= (1) + (m/(2n)) E[n1

2] + (1/2)
= (1) + (m/(2n)) (n/m + n(n-1)/m2) + (1/2)
= (1) + 1 + (n-1)/(2m) = (1+)

24

Remark 1
•In both cases, search time is (1+)
•Deletion is done by search and delete
 expected time is (1+)

•If m is set to (n)
•Space of hash table T = (n)
•Expected time for each operation = (1)

25

Remark 2
•Our analysis for successful search time is

different from that in the textbook
•Though the value obtained is exactly

the same
•See the textbook for a reference

•In fact, we can use the same analysis
technique to obtain the average running
time for bucket sort (See Notes 5)

26

Hash with Open Addressing

27

Open Addressing
•In open addressing, each entry of the

hash table contains to at most 1 key
 load factor is at most 1

•When inserting a key k, we use k to
compute a sequence of entries to check,
until we get an empty entry to store k

•The hash function h now contains two
parameters : (1) the key, and (2) the
sequence number

28

Open Addressing
•The insertion procedure is as follows :

1. j = 0 ;
2. while entry h(k, j) is not empty

increase j by 1 ;
3. Insert key k at the entry h(k, j)

•We often require h(k, 0), h(k, 1), …to
be a permutation of 1, 2, …, m
 Allows all entries of T to be used

29

Open Addressing
•We assume that no delete is allowed
•In that case, search can be done in the

same way as we insert
•To search for x, we repeatedly try

the entries h(k, j), for j = 0, 1, 2, …
•We stop when we have found x or

when we hit an empty entry

•What is the average insert/search time?

30

A Useful Formula
Lemma: Let X be a random variable that

takes on non-negative integral values.
Then,

E[X] = i=1,2,... Pr(X ¸ i)

Proof:
i=1,2,... Pr(X ¸ i) = i=1,2,...j=i,i+1,... Pr(X = j)

= j=1,2,...i=1,2,...,j Pr(X = j)
= j=1,2,... j Pr(X = j) = E[X]

31

A Useful Formula (2nd proof)

Pr(X=1)

2*Pr(X=2)

……

3*Pr(X=3)

4*Pr(X=4)
E[X]

Pr(X 1)

Pr(X 2)

Pr(X 3)



i=1,2,... Pr(X ¸ i)

sums up

sums up…

32

Performance of Open Addressing
•To analyze the average case, we use the

uniform hashing assumption :

1. The function h(k, j) produces a
random permutation of 1, 2, …, m

2. Also, each permutation is equally
likely to be produced

•Consequently, h(k,0) has 1/m chance to be in any entry.
Then h(k,1) has 1/(m-1) chance to be in any other
entry apart from h(k,0), and so on …

33

Unsuccessful Search
Theorem:

The expected time for an unsuccessful
search is O(1/(1-)), where = n/m

Proof: Let X = # entries examined

Pr(X 1) = 1, Pr(X 2) = n/m = 

Pr(X 3) = n/m (n-1)/(m-1) 2

Pr(X i) = n/m …(n-i+2)/(m-i+2) i-1

 E[X] = Pr(X i) 1 + + 2 + …= 1/(1-)

34

Insertion
Theorem:

Assume we never insert a key twice in S.
The expected time for an insertion is
O(1/(1-)), where = n/m

Proof:

Insertion requires an unsuccessful search
followed by placing the key to the first
empty entry

 Same time as unsuccessful search

35

Successful Search
Theorem:

Assuming that each key in S has equal
chance to be searched
The expected time for a successful search
is O((1/) log { 1/(1-) })

Proof:

Expected time to search the (j+1)th

inserted key = 1/(1-j/m) = m/(m-j) (why?)

36

Successful Search
Proof (cont) :

Expected Search Time
= 1/n (m/m + m/(m-1) + …+ m/(m-n+1))
= m/n (1/m + 1/(m-1) + …+ 1/(m-n+1))
= m/n O(log m –log (m-n)) [harmonic sum]

= m/n O(log { 1/(1 –n/m) })
= 1/O(log { 1/(1-) })

