CS23561
Data Structures

"Pass by Value" or "Pass by Pointer”

About this slide

In today's lecture, we mentioned two
ways to perform enqueue in a queue

- In fact, one of the way is WRONG

We shall see why it is wrong

The wrong enqueue

» The following function tries to perform
enqueue using pass by value :

vol d enqueue(struct node *head,

struct node *tail, struct node y)
{
I1f (head '= NULL) // 1f not enpty
{ tail->next = & ; tall = &y; }
el se
{ head =tall = &y ; }

}

The wrong enqueue

» Unfortunately, it is WRONG
» Suppose in the main program, we write :

struct node *head, *tail, x :
head = NULL :
enqueue(head, tail, x) ;

* What happens is that after enqueue, head
nor tail do not point at x as we expect

* Reason: During enqueue, there is a temp
memory space for the local variable y ...

4

The wrong enqueue

* Then, y copies all the contents of x from

the main program

» Then inside enqueue, the local variables
head and tail are assigned to point aty

» Consequently, head and tail in main program
have no change, and no one points at x |

5

The correct enqueue

+ We need to ensure that after enqueue,
both head and tail in the main program are
set correctly (point at x, not y)

» In this case, we shall use pass by pointers

- Another scheme called pass by reference may
be used instead

» Since values of head and tail need to be

changed, we need to know their actual

memory addresses inside enqueue

The correct enqueue

» To pass the address of a pointer p is easy
- Simply use a pointer that points at p

voli d enqueue(struct node **head,
struct node **tail, struct node *y)

{
If (*head !'= NULL) // 1f not enpty

{ (*tail)->next =y ; (*tail) =vy,; }
el se
{ (*head) = (*tail) =y ; }

}

The correct enqueue

* Then inside the main program, we write :

struct node *head, *tail, x :
head = NULL :
enqueue(&head, &ail, &) ;

+ After the enqueue call, the actual memory
locations of both head and tail will be
filled with the actual address of x

