
1

CS2351
Data Structures

“Pass by Value”or “Pass by Pointer”

2

• In today’s lecture, we mentioned two
ways to perform enqueue in a queue
– In fact, one of the way is WRONG

• We shall see why it is wrong

About this slide

3

•The following function tries to perform
enqueue using pass by value :

The wrong enqueue

void enqueue(struct node *head,
struct node *tail, struct node y)

{
if (head != NULL) // if not empty
{ tail->next = &y ; tail = &y; }
else
{ head = tail = &y ; }

}

4

•Unfortunately, it is WRONG
•Suppose in the main program, we write :

The wrong enqueue

struct node *head, *tail, x ;
head = NULL ;
enqueue(head, tail, x) ;

•What happens is that after enqueue, head
nor tail do not point at x as we expect

•Reason: During enqueue, there is a temp
memory space for the local variable y …

5

The wrong enqueue
•Then, y copies all the contents of x from

the main program
x

…
y

•Then inside enqueue, the local variables
head and tail are assigned to point at y

•Consequently, head and tail in main program
have no change, and no one points at x !

6

•We need to ensure that after enqueue,
both head and tail in the main program are
set correctly (point at x, not y)

•In this case, we shall use pass by pointers
–Another scheme called pass by reference may

be used instead
•Since values of head and tail need to be

changed, we need to know their actual
memory addresses inside enqueue

The correct enqueue

7

•To pass the address of a pointer p is easy
–Simply use a pointer that points at p

The correct enqueue

void enqueue(struct node **head,
struct node **tail, struct node *y)

{
if (*head != NULL) // if not empty
{ (*tail)->next = y ; (*tail) = y; }
else
{ (*head) = (*tail) = y ; }

}

8

•Then inside the main program, we write :

The correct enqueue

struct node *head, *tail, x ;
head = NULL ;
enqueue(&head, &tail, &x) ;

•After the enqueue call, the actual memory
locations of both head and tail will be
filled with the actual address of x

