CS2351 Data Structures

Homework 2 (Suggested Solution)

There are many different ways to answer the questions perfectly. Don’t worry if your answer is
different with ours. In general, what we want to have is precise and concise.

1. Ans:
 (a) We guess $T(n) = O(n)$ and show it by induction. Assume that $T(n) \leq cn$ for all $n < k$. Then we have:

 $$T(k) = T(k/5) + T(3k/4) + k \leq ck/5 + 3ck/4 + k$$

 $$= 19ck/20 + k \leq ck \text{ whenever } c \geq 20.$$

 Thus, $T(n) \leq 20n$ for all n. On the other hand, by definition of $T(n)$, we have $T(n) \geq n$, so that $T(n) = \Omega(n)$. Combining the results, we conclude that $T(n) = \Theta(n)$.

 (b) Since $n^{\log_2 8} = n^3 = \Theta(n^3)$, by Master Theorem, we have

 $$T(n) = \Theta(n^3 \log n).$$

 (c) Let $m = \log n$ and $S(m) = T(2^m) = T(n)$. Then we have:

 $$S(m) = 8S(m/2) + m^3.$$

 From the result of part (b), we see that $S(m) = \Theta(m^3 \log m)$. Thus, we have:

 $$T(n) = S(m) = \Theta(\log^3 n \log \log n).$$

2. Ans:
 (a) Quick Sort sorts 1 element correctly. Inductively, assume that Quick Sort sorts n elements correctly, whenever $n < k$. When Quick Sort is applied on an array of k elements, it first selects an arbitrary element x, and obtain the groups A_{small} and A_{large}. Since both groups must contain fewer than k elements, Quick Sort must sort each group correctly (due to the induction hypothesis). The overall correctness follows since all elements in A_{small} are smaller than x, and all elements in A_{large} are larger than x, so that the returned array of k elements is sorted.

 (b) If in each round, the element x selected partition the groups unevenly, say all elements are in A_{large}, the total running time will be

 $$(n-1) + (n-2) + \cdots + 1 = \Theta(n^2).$$

 Since the worst case can only be worse, the worst case running time is $\Omega(n^2)$.

 (c) The algorithm may not return a sorted array with the same number of elements. For instance, if all elements are the same, there will be no A_{small} and A_{large}, and the algorithm will just return 1 element!

 (d) To make the algorithm correct, there are two methods. One is extend A_{small} to contain those elements with the same value as x. Another method is to count the number t of elements with value equal to x, so that in the final output, we first list the sorted A_{small}, then list t copies of x, and then list the sorted A_{large}. The second method is slightly better since there are fewer level of recursions.
3. We first insert the n numbers into the heap, but without caring the heap property. Next, we use the heapify process to fix the heap property of all nodes. Finally we call Extract-Min k times to obtain the desired k smallest numbers, in sorted order.

The time for heapify is $O(n)$ and the total time for k Extract-Min is $O(k \log n)$. Thus the above algorithm runs in $O(n + k \log n)$ time.