CS 5319 Advanced Discrete Structure

Lecture 11:

Introduction to Group Theory I

Outline

- Introduction
- Groups and Subgroups
- Generators
- Cosets (and Lagrange's Theorem)
- Permutation Group (and Burnside's Theorem)
- Group Codes

• Let A and B be two sets. A function of the form $A \times A \rightarrow B$ is called a binary operation on A

Ex: Consider a vending machine which delivers

coke if we insert two \$10 coins

water if we insert \$5 + \$10 coins

gum if we insert two \$5 coins

The operations of the machine is a binary operation on { \$5, \$10 }

- Intuitively, a binary operation specifies how two elements are combined to get an output
- Let f denote a binary operation on A
- For easier understanding, we usually write

$$a_1 f a_2$$
 instead of $f(a_1, a_2)$

• We also usually use "operator symbols" such as $+, \times, \oplus, \star, \cdot, \ldots$ as names of binary operations

Ex: We may use + to name the previous operation. Then we have +(\$5,\$10) = \$5 + \$10 =water

- In this lecture, we shall encounter mostly binary operations of the form $A \times A \rightarrow A$
- Such binary operation is said to be closed

Ex: Suppose the hair color of a child is determined by the hair colors of its parents:

Mother		-11-	
Father	light	dark	Th
light	light	dark	bin
dark	dark	dark	
	Ch	ild	

This is a closed binary operation

• A binary operation \star on a set A is said to be associative if for any a, b, c in A

$$(a \star b) \star c = a \star (b \star c)$$

• It follows that we can write $(a \star b) \star c$ as $a \star b \star c$ without any possible confusion

Ex: Let A = a set of people with distinct height $\Delta = a$ binary operation on A, such that $a \Delta b = a$ the taller one of a and b. Then Δ is an associative operation

- The notion of binary operation can be extended immediately
 - A ternary operation on a set A is a function from $(A \times A) \times A$ to some set B
 - An m-ary operation on a set A is a function from A^m to some set B

- A set, together with a number of operations on the set, is called an algebraic system
- We denote $(A, \oplus, \star, \cdot)$ for an algebraic system, where A is a set and \oplus, \star , · are operations on A

Ex: Let $A = \{ \$5, \$10 \}$, and + be a binary operation such that

$$$5 + $5 = gum, $10 + $10 = coke,$$

 $$5 + $10 = $10 + $5 = water$

Then (A, +) is an algebraic system

Ex: $(N, +, \times)$ is an algebraic system, where N =natural numbers, and $+, \times =$ usual addition and multiplication

Ex: Let \oplus be a binary operation such that $\oplus(a,b)=(a+b)$ rem 2

Let Δ be a ternary operation such that $\Delta(a, b, c) = \max \text{ of } a, b, c$

Then (N, \oplus, Δ) is an algebraic system

• Let (A, \star) be an algebraic system, where \star is a binary operation on A

Definition: (A, \star) is called a semigroup if

- 1. \star is a closed operation; and
- 2. \star is an associative operation

Ex: (N, +) is a semigroup

Ex: Let S = all binary strings, $\cdot =$ concatenation (S, \cdot) is a semigroup

• Let (A, \star) be an algebraic system, where \star is a binary operation on A

Definition: An element e in A is said to be a left identity, if for every x in A

$$e \star x = x$$

An element e in A is said to be a right identity, if for every x in A

$$x \star e = x$$

Ex: In the algebraic system (N, \times) , the element 1 is both a left identity and a right identity

Ex:

*	α	β	γ	δ
α	δ	α	β	γ
β	α	β	γ	δ
γ	α	β	γ	γ
δ	α	β	γ	δ

- In this algebraic system, both β and δ are left identities
- There are no right identities

• Let (A, \star) be an algebraic system, where \star is a binary operation on A

Definition: If e in A is both a left identity and a right identity, then we say e is an identity

• Suppose e_1 is a left identity, e_2 is a right identity

$$\bullet \qquad e_1 = e_1 \star e_2 = e_2$$

This implies that there is at most one identity

• Let (A, \star) be an algebraic system, where \star is a binary operation on A

```
Definition: (A, \star) is called a monoid if
```

- 1. \star is a closed operation;
- 2. \star is an associative operation; and
- 3. There is an identity

Ex: (N, \times) is a monoid, but (N, +) is not Here, we assume $N = \{1, 2, 3, ...\}$

• Let (A, \star) be an algebraic system with identity e

Definition: An element a in A is said to be a left inverse of an element b if

$$a \star b = e$$

An element a in A is said to be a right inverse of an element b if

$$b \star a = e$$

Ex: In the algebraic system (Z, +), 0 is the identity. For each integer x, -x is both a left inverse and a right inverse

$\mathbf{F}_{\mathbf{v}}$	•	ı				
LX	*	α	β	γ	δ	• In this algebraic system,
	α	α	β	γ	δ	α is the identity
	β	α β γ	δ	α	γ	\rightarrow β is a left inverse of γ
	γ	γ	β	β	ά	\rightarrow δ is a right inverse of γ
	δ	δ	α	γ	δ	

• Let (A, \star) be an algebraic system with an identity

Definition: If an element a in A is both a left inverse and a right inverse of an element b, then we say a is an inverse of b

Ex: In (Z, +), -3 is an inverse of 3. Clearly, 3 is an inverse of -3.

• Let (A, \star) be an algebraic system, where \star is a binary operation on A

```
Definition: (A, \star) is called a group if
```

- 1. \star is a closed operation;
- 2. \star is an associative operation;
- 3. There is an identity; and
- 4. Every element in A has a left inverse

Ex: (Z, +) is a group, but (N, \times) is not

Lemma 1:

Let (A, \star) be a group. A left inverse of an element a is also a right inverse of a

Proof:

```
Let b = left inverse of a

c = left inverse of b

e = identity
```

Proof (cont):

First, we have:

$$(c \star (b \star a) \star b) = c \star e \star b = e$$

Also, we have:

$$(c \star (b \star a) \star b) = (c \star b) \star (a \star b)$$
$$= a \star b$$

- \rightarrow $a \star b = e$
- \rightarrow b is also a right inverse of a

Lemma 2:

Let (A, \star) be a group. The inverse of an element a is unique. We denote this inverse by a^{-1}

Proof:

Suppose b and c are both inverses of a

Then we have:

$$b = (b \star a) \star b = (c \star a) \star b = c$$

Some Examples of Groups

- Ex: $G = \{0, 1\}, a \oplus b = (a + b) \text{ rem } 2$ $\rightarrow (G, \oplus) \text{ is a group}$
- Ex: $Z_n = \{0, 1, ..., n-1\}, a \oplus_n b = (a+b) \text{ rem } n$ $(Z_n, \oplus_n) \text{ is a group}$
- Ex: $R = \{0^{\circ}, 60^{\circ}, 120^{\circ}, 180^{\circ}, 240^{\circ}, 300^{\circ}\},\$ $a \star b = \text{overall angular rotation to successive}$ rotations by a and then b
 - \rightarrow (R, \star) is a group

• Let (A, \star) be a group

Definition: If \star is commutative, that is, $a \star b = b \star a$ for any a and b, then we say (A, \star) is a commutative group, or an abelian group

Ex: (Z, +) is an abelian group Let M = all non-singular $n \times n$ matrixes M = M = M = M = M

• Let (A, \star) be a group

Definition: If A is finite, then (A, \star) is called a finite group (otherwise, A is an infinite group)

The size of A is called the order of the group

Ex: (Z, +) is an infinite group (Z_n, \oplus_n) is a finite group, whose order is n

• Let (A, \star) be a group. Let B be a subset of A

Definition: If (B, \star) is also a group, we call it a subgroup of (A, \star)

Ex: Let E denote all even integers. Then (E, +) is a subgroup of (Z, +)

Ex: Let R and \star be as defined on Page 24. Then ($\{0^{\circ}, 180^{\circ}\}, \star$) is a subgroup of (R, \star)

- To check whether (B, \star) is a subgroup of (A, \star) , we should test:
 - 1. Whether \star is a closed operation on B;
 - 2. Whether the identity element is in *B*;
 - 3. Whether each element in B has an inverse.

We can skip the checking of associative property of \star since we know (A, \star) is a group, so that it must be associative

• In fact, if B is finite, we have a easier checking for whether (B, \star) is a subgroup of (A, \star)

Theorem 1:

Let (A, \star) be a group, and B be a subset of A. If B is finite, then

 (B,\star) is a subgroup of (A,\star)

if \star is a closed operation on B

Proof: Let a be an element of B.

Consider the elements a, a^2 , a^3 , ... By pigeonhole principle, there exist j < k such that $a^j = a^k$

- a^{k-j} = identity of (A, \star) , since $a^j = a^{k-j} \star a^j$, so that it must also be the identity e of (B, \star)
- If k-j > 1: $a \star a^{k-j-1} = a^{k-j} = e$ Else k-j = 1: $a \star a = e \star e = e$
 - \rightarrow In both cases the inverse of a exists