CS 5319 Advanced Discrete Structure

Lecture 9:

Introduction to Number Theory II

Outline

- Divisibility
- Greatest Common Divisor
- Fundamental Theorem of Arithmetic
- Modular Arithmetic
- Euler Phi Function
- RSA Cryptosystem

Reference: Course Notes of MIT 6.042J (Fall 05) by Prof. Meyer and Prof. Rubinfeld Fundamental Theorem of Arithmetic

Fundamental Theorem of Arithmetic

Theorem 3:

Any positive integer n > 1 can be written in a unique way as a product of primes :

$$n = p_1 p_2 \dots p_j \qquad (p_1 \le p_2 \le \dots \le p_j)$$

The above theorem is called the fundamental theorem of arithmetic

Before we prove it, let us prove a useful lemma

Fundamental Theorem of Arithmetic Lemma 3:

Let p be a prime. (1) If $p \mid ab$, then $p \mid a$ or $p \mid b$

(2) If $p \mid a_1 a_2 \dots a_n$, then p divides some a_i

Proof of (1): gcd(a, p) must be either 1 or p (why?)

If gcd(a, p) = p, then the claim holds.

Else gcd(a, p) = 1, so $p \mid b$ by Lemma 2 (part (4)).

Proof of (2): By induction

Proof of the Fundamental Theorem

- First, we prove (by strong induction) that all *n* can be written as a product of primes.
 - Base case: n = 2 is a prime.
 - Inductive case: Assume all k < n can be written as product of primes. If n is a prime, then the statement is true. Else, n = ab for some a, b < n. Then by the induction assumption, a and b can both be written as product of primes, which implies that n = a · b can be as well.

Proof of the Fundamental Theorem

- Next, we prove (by contradiction) that all *n* can be written as a product of primes in a *unique* way.
 - Suppose the statement is not true
 - Let *n* be the smallest integer that can be written as product of primes in more than one way
 - Let $n = p_1 p_2 \dots p_j$

 $= q_1 q_2 \dots q_k$

be two of the (possibly many) ways to write *n* as a product of primes

Proof of the Fundamental Theorem

- Proof (cont) :
 - Then $p_1 \mid n$ so that p_1 divides some q_i
 - Since q_i is a prime, we must have $p_1 = q_i$
 - Now we delete p₁ from the first product, and qi from the second product, we find that n / p₁ is a positive integer *smaller* than n and can be written as product of primes in more than one way → Contradiction occurs, proof completes

Modular Arithmetic

Modular Arithemetic

- Gauss introduced the notion of congruence in his book *Disquisitiones Arithmeticae*
- We say *a* is congruent to *b* modulo *n* if n | (a b)
- It is denoted by : $a \equiv b \pmod{n}$
- For instance,

 $29 \equiv 15 \pmod{7}$ because $7 \mid (29 - 15)$

Facts About Congruence

Lemma 4:

Congruence modulo *n* is an equivalent relation. That is :

1. $a \equiv a \pmod{n}$ 2. $a \equiv b \pmod{n}$ implies $b \equiv a \pmod{n}$ 3. $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$ implies $a \equiv c \pmod{n}$ Facts About Congruence Lemma 5: (Congruence and Remainder)

1. $a \equiv (a \operatorname{rem} n) \pmod{n}$ 2. $a \equiv b \pmod{n}$ implies $(a \operatorname{rem} n) = (b \operatorname{rem} n)$

Proof of (2) : Let q_1 and q_2 be integers such that (*a* rem *n*) = $a - q_1 n$ and (*b* rem *n*) = $b - q_2 n$ Thus $(a \operatorname{rem} n) - (b \operatorname{rem} n)$

 $= (a - b) + n (q_2 - q_1)$ is a multiple of n

Facts About Congruence

Lemma 6:

For all $n \ge 1$, the following statements hold.

- 1. $a \equiv b \pmod{n}$ implies $a + c \equiv b + c \pmod{n}$
- 2. $a \equiv b \pmod{n}$ implies $ac \equiv bc \pmod{n}$
- 3. $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ implies $a + c \equiv b + d \pmod{n}$

4.
$$a \equiv b \pmod{n}$$
 and $c \equiv d \pmod{n}$
implies $ac \equiv bd \pmod{n}$

Cancellation Law

- The previous statements show that under the same modulo, we can validly perform addition, subtraction, and multiplication of congruences
- However, division may not be okay.
 For instance,

 $14 \equiv 4 \pmod{10}$ but $7 \not\equiv 2 \pmod{10}$

• The theorem on the next page provides conditions where division is okay

Cancellation Law

Theorem 4:

If $bc \equiv bd \pmod{n}$ and gcd(b, n) = 1, then $c \equiv d \pmod{n}$

Proof :

Since $n \mid bc - bd$, and gcd(b, n) = 1, we have $n \mid c - d$ by Lemma 2 part (4)

Multiplicative Inverse

• In fact, the previous theorem can be proved in an alternative way :

Since gcd(b, n) = 1, there exists *b*' such that

b'b + qn = 1 for some q.

Thus $b'b = 1 \pmod{n}$. The theorem follows by multiplying *b*' on both sides of the congruence

• The value *b*' is called the multiplicative inverse of *b* modulo *n*, and is usually denoted by *b*⁻¹

Cancellation Law

Corollary 1:

Suppose *p* is a prime and *k* is not a multiple of *p*. Then the sequence :

 $(0 \cdot k)$ rem p, $(1 \cdot k)$ rem p, ..., $((p-1) \cdot k)$ rem p

is a permutation of the sequence :

0, 1, 2, …, *p*−1

This remains true if the first term of each sequence is omitted

Cancellation Law

- Proof : The first sequence contains p numbers, ranging from 0 to p - 1. Also, the numbers in the first sequence are distinct; otherwise, there exists distinct *i* and *j* (i, j < p) such that
 - $(i \cdot k) \operatorname{rem} p = (j \cdot k) \operatorname{rem} p$
 - $\rightarrow i \cdot k \equiv j \cdot k \pmod{p} \ \rightarrow i \equiv j \pmod{p}$

which is impossible. Thus, the first sequence contains *all* numbers from 0 to p - 1. The claim is still true if first terms are omitted, as both are 0

Fermat's Little Theorem

Theorem 5:

Let *p* be a prime. Then for any integer *a* , $a^p \equiv a \pmod{p}$

Proof: If $p \mid a$, then $p \mid a^p - a$. Else, we have $(p-1)! \equiv (a \operatorname{rem} p) (2a \operatorname{rem} p) \dots ((p-1)a \operatorname{rem} p)$ $\equiv a^{p-1} (p-1)! \pmod{p}$ The claim follows by multiplying the

multiplicative inverse of (p-1)! to both sides

Wilson's Theorem

Theorem 6:

The congruence $(m-1)! \equiv -1 \pmod{m}$ is true if and only if *m* is a prime

- If gcd(*a*, *b*) = 1, we say *a* is coprime to *b* (or we say *a* and *b* are relatively prime)
- Euler first studied the following function :

 $\varphi(n) = \#$ of positive integers at most *n* which are coprime to *n*

- $\varphi(n)$ is called the Euler phi function
- For instance, $\phi(1) = 1$, $\phi(9) = 6$, $\phi(10) = 4$

Fermat's Little Theorem (Revisited) Corollary 2:

Suppose k is a positive integer coprime to n. Let $k_1, k_2, ..., k_{\phi(n)}$ denote all integers coprime to *n*, with $0 \le k_i < n$. Then the sequence : $(k_1 \cdot k) \operatorname{rem} n, (k_2 \cdot k) \operatorname{rem} n, \dots, (k_{\omega(n)} \cdot k) \operatorname{rem} n$ is a permutation of the sequence : $k_1, k_2, ..., k_{\omega(n)}$

Euler's Theorem

Theorem 7:

If gcd(k, n) = 1, then $k^{\varphi(n)} \equiv 1 \pmod{n}$

Proof :

$$k_{1} \cdot k_{2} \cdot \ldots \cdot k_{\varphi(n)}$$

$$\equiv (k_{1} \ k \ \text{rem} \ n) \cdot (k_{2} \ k \ \text{rem} \ n) \cdot \ldots \cdot (k_{\varphi(n)} \ k \ \text{rem} \ n)$$

$$\equiv k^{\varphi(n)} \ k_{1} \cdot k_{2} \cdot \ldots \cdot k_{\varphi(n)} \qquad (\text{mod} \ n)$$

Theorem 8:

The $\boldsymbol{\phi}$ function can be expressed as :

$$\varphi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)$$

Main Idea of Proof:

Induction on number of prime factors of n

Proof:

Base Case: *n* has one prime factor In that case, $n = q^k$ for some prime q and k Then out of all numbers from 1 to q^k , exactly q^{k-1} of them are multiples of q $\rightarrow \phi(n) = \phi(q^k)$ $= q^{k} - q^{k-1}$ = n (1 - 1/q)

Proof:

Inductive Case: *n* has *j* prime factors Let $n = q^k n'$ for some prime *q* and *k*, with gcd(q, n') = 1Thus, *n*' has exactly *j* – 1 factors

Now, consider arranging the integers [1, n]into q^k groups, each group with n' integers Then we have (see next page) :

Proof (cont) :

Number of integers coprime to n'

 $= q^k \varphi(n')$

Among these integers, exactly 1/q of them are multiples of q (why?)

→ Number of integers coprime to $q^k n'$ = $q^k \phi(n') (1 - 1/q) = n \prod_{p/n} (1 - 1/p)$

Corollary 3:

The $\boldsymbol{\phi}$ function obeys the following properties :

- 1. Suppose the prime factorization of *n* is : $n = p_1^{e_1} p_2^{e_2} \dots p_j^{e_j}$ (all p_i 's are distinct) Then $\varphi(n) = \varphi(p_1^{e_1}) \varphi(p_2^{e_2}) \dots \varphi(p_j^{e_j})$
- 2. Suppose *a* and *b* are relatively prime. Then $\varphi(ab) = \varphi(a) \varphi(b)$