CS 5319
 Advanced Discrete Structure

Lecture 5:
Recurrence Relations I

Outline

- Introduction
- Linear Recurrence Relations with Constant Coefficients
- Solution by Generating Functions
* Special Non-Linear Recurrences
- Recurrence with Two Indices

Introduction

Introduction

- Consider the sequence ($1,3,9,27,81, \ldots)$
- We can describe the sequence by :

$$
a_{n}=3^{n}
$$

- Alternatively, we can describe the sequence by expressing the nth term with the $(n-1)$ st term, together with the specification of the 1st term :

$$
a_{n}=3 a_{n-1}, \quad a_{0}=1
$$

Introduction

- For a sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$, an equation that relates a_{n} to some of its predecessor is called : recurrence relation or difference equation
- To start the computation, one must know several numbers in the sequence. These numbers are called the boundary conditions
- Ex: $a_{n}=3 a_{n-1} \Leftrightarrow$ recurrence relation

$$
a_{0}=1 \quad \Leftrightarrow \text { boundary condition }
$$

Introduction

- Ex: Consider the Fibonacci sequence

$$
(1,1,2,3,5,8,13,21, \ldots)
$$

- The sequence can be described by the recurrence relation:

$$
a_{n}=a_{n-1}+a_{n-2}
$$

boundary conditions:

$$
a_{0}=1, \quad a_{1}=1
$$

Introduction

- Ex: Let there be n ovals in the plane. Suppose that any two ovals intersect at exactly two points, and no three ovals intersect at the same point
Q: How many regions do they divide the plane ?

Introduction

- Let $a_{n}=$ number of regions divided by n ovals
- Suppose we have already drawn $n-1$ ovals
- The nth oval will be divided into $2(n-1)$ arcs
\rightarrow

$$
a_{n}=a_{n-1}+2(n-1)
$$

- Together with the boundary condition $a_{1}=2$, we can further compute

$$
a_{2}=4, a_{3}=8, a_{4}=14, a_{5}=22, a_{6}=32, \ldots
$$

Introduction

- In many cases obtaining the recurrence is a big step towards the solution to a counting problem
- This is because even if we do not know the general expression, we can still compute the desired term a_{n} by a step-by-step approach
- Of course it is better if we can really obtain a general expression for a_{n}; in the following, we shall discuss a few ways of doing so

Linear Recurrence Relations

 with Constant Coefficients
Linear Recurrence Relations

- A recurrence relation of the form :

$$
C_{0} a_{n}+C_{1} a_{n-1}+\ldots+C_{r} a_{n-r}=f(n)
$$

is called a linear recurrence relation with
constant coefficients, where all C 's are constants

- Ex: $3 a_{n}-5 a_{n-1}+2 a_{n-2}=n^{2}+5$

Linear Recurrence Relations

- If r consecutive terms, say $a_{k+1}, a_{k+2}, \ldots, a_{k+r}$, are known, then any a_{n} can be calculated recursively
- This implies that:

Solution to the linear recurrence is determined uniquely by these r boundary conditions

- Indeed, we shall see that :

General form of the solution (when boundary conditions not fixed) has r unknown constants

Linear Recurrence Relations

- Let us begin with a simple example
- Suppose we know that

$$
a_{n}+a_{n-1}=2 n+1
$$

- By observation, we may see that

$$
a_{n}=n+1
$$

satisfies the above relation

Linear Recurrence Relations

- However, if we consider a similar recurrence

$$
a_{n}+a_{n-1}=0
$$

we may notice that for any constant A

$$
a_{n}=A \times(-1)^{n}
$$

satisfies the above relation

Linear Recurrence Relations

- Consequently, we see that for any A,

$$
a_{n}=n+1+A \times(-1)^{n}
$$

will satisfy the original recurrence

$$
a_{n}+a_{n-1}=2 n+1
$$

- If somehow we know the boundary condition, we can determine the value of A exactly
- Ex: If $a_{0}=8$, then $A=7$

Linear Recurrence Relations

- Let us review what we have done
- In the above computation, we first find out a particular case where

$$
a_{n}+a_{n-1}=2 n+1
$$

to obtain

$$
a_{n}=n+1
$$

- This is called a particular solution to the recurrence

Linear Recurrence Relations

- Next, we set the right side of the recurrence to 0 .

$$
a_{n}+a_{n-1}=0
$$

By solving this new recurrence, we obtain

$$
a_{n}=A \times(-1)^{n}
$$

- This is called the homogeneous solution to the recurrence

Linear Recurrence Relations

- The particular solution and the homogeneous solution together allow us to obtain a general (total) solution to the original recurrence :

$$
a_{n}=n+1+A \times(-1)^{n}
$$

- Finally, we resolve the unknowns based on the boundary conditions, and obtain the exact solution to the recurrence relation

Linear Recurrence Relations

- The particular solution is usually found by clever "guessing"
- Ex: To solve

$$
a_{n}+2 a_{n-1}=n+3
$$

a reasonable guess is that

$$
a_{n}=B n+D
$$

for some constants B and D

Linear Recurrence Relations

- Ex: To solve

$$
a_{n}-a_{n-1}=n+3
$$

a reasonable guess is that

$$
a_{n}=B n^{2}+D n+E
$$

for some constants B, D, and E

Linear Recurrence Relations

- Ex: To solve

$$
a_{n}+2 a_{n-1}+a_{n-2}=2^{n}
$$

a reasonable guess is that

$$
a_{n}=B * 2^{n}
$$

for some constant B

Linear Recurrence Relations

- The homogeneous solution can be found by a systematic way
- To solve

$$
C_{0} a_{n}+C_{1} a_{n-1}+\ldots+C_{r} a_{n-r}=0
$$

we first create a characteristic equation :

$$
C_{0} x^{r}+C_{1} x^{r-1}+\ldots+C_{r}=0
$$

Linear Recurrence Relations

- Suppose α is a root to the characteristic equation. Then we see that for any constant A

$$
a_{n}=A \alpha^{n}
$$

is a homogeneous solution, because

$$
C_{0}\left(A \alpha^{n}\right)+C_{1}\left(A \alpha^{n-1}\right)+\ldots+C_{r}\left(A \alpha^{n-r}\right)=0
$$

Linear Recurrence Relations

- Extending the previous arguments, if the characteristic equation has r distinct roots, denoted by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$.
- Then we see that for any $A_{1}, A_{2}, \ldots, A_{r}$

$$
a_{n}=A_{1} \alpha_{1}^{n}+A_{2} \alpha_{2}^{n}+\ldots+A_{r} \alpha_{r}^{n}
$$

is a homogeneous solution

Linear Recurrence Relations

- Ex : The recurrence relation for Fibonacci sequence is :

$$
a_{n}=a_{n-1}+a_{n-2}
$$

This gives the characteristic equation :

$$
x^{2}-x-1=0
$$

Linear Recurrence Relations

- The two roots of the characteristic equation are :

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}
$$

Thus the homogeneous solution is :

$$
a_{n}=A \alpha^{n}+B \beta^{n}
$$

This is also the total solution since the particular solution is 0

Linear Recurrence Relations

- Because $a_{0}=1$ and $a_{1}=1$, we have

$$
1=A+B, \quad 1=A \alpha+B \beta
$$

Thus, we can solve A and B, and finally obtain

$$
a_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}
$$

Linear Recurrence Relations

- Ex: Evaluate the $n \times n$ determinant

$$
\left|\begin{array}{ccccccccccc}
1 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
. . & . & . & . . & . & \ldots & . & . & . . & . & . . \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 1
\end{array}\right|
$$

Linear Recurrence Relations

- Let $a_{n}=$ the value of $n \times n$ determinant
- By expanding the determinant with respect to the first column, we get

$$
\begin{aligned}
& \left.a_{n}=a_{n-1}-\left\lvert\, \begin{array}{ccccccccc}
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}\right.\right) \\
& n-1
\end{aligned}
$$

Linear Recurrence Relations

- Next by expanding the remaining determinant with respect to the first row, we get

$$
a_{n}=a_{n-1}-a_{n-2}
$$

This gives the characteristic equation :

$$
x^{2}-x+1=0
$$

Linear Recurrence Relations

- The two roots of the characteristic equation are :

$$
\alpha=\frac{1+\sqrt{3} i}{2}, \beta=\frac{1-\sqrt{3} i}{2}
$$

Thus the homogeneous solution is :

$$
a_{n}=A \alpha^{n}+B \beta^{n}
$$

This is also the total solution since the particular solution is 0

Linear Recurrence Relations

- Since we are dealing with complex numbers, it is more convenient to express it in polar form :

$$
\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}, \beta=\cos \frac{\pi}{3}-i \sin \frac{\pi}{3}
$$

Thus the homogeneous solution becomes:

$$
A\left(\cos \frac{n \pi}{3}+i \sin \frac{n \pi}{3}\right)+B\left(\cos \frac{n \pi}{3}-i \sin \frac{n \pi}{3}\right)
$$

Linear Recurrence Relations

- Because $a_{1}=1$ and $a_{2}=0$, we can solve A and B, and finally obtain

$$
a_{n}=\frac{1}{2} \cos \frac{n \pi}{3}+\frac{1}{\sqrt{3}} \sin \frac{n \pi}{3}
$$

Linear Recurrence Relations

- Observe: There is no i in the expression for a_{n}
- Reason: All coefficients in the recurrence, and the boundary conditions, are real
- Thus we may at the beginning assume that

$$
a_{n}=D \cos \frac{n \pi}{3}+E \sin \frac{n \pi}{3}
$$

for some real numbers D and E, and solve for them

Linear Recurrence Relations

- So far, we have only considered the case where the characteristic equation has distinct roots.
- What if a root α is a double root?
- We shall see that apart from $a_{n}=A \alpha^{n}$,

$$
a_{n}=B n \alpha^{n}
$$

is also a homogeneous solution

Linear Recurrence Relations

- First, we observe that α is a root to

$$
C_{0} n x^{n-1}+C_{1}(n-1) x^{n-2}+\ldots+C_{r}(n-r) x^{n-r-1}=0
$$

so that

$$
C_{0} n \alpha^{n-1}+C_{1}(n-1) \alpha^{n-2}+\ldots+C_{r}(n-r) \alpha^{n-r-1}=0
$$

- Consequently, this implies

$$
a_{n}=B n \alpha^{n-1} \quad\left(\text { or } B n \alpha^{n}\right)
$$

is a homogeneous solution

Linear Recurrence Relations

- Extending the previous arguments, if α is a k multiple root of the characteristic equation, then

$$
a_{n}=\left(A_{1} n^{k}+A_{2} n^{k-1}+\ldots+A_{k}\right) \alpha^{n}
$$

is a homogeneous solution

- Further, if $\alpha_{1}, \alpha_{2}, \ldots$ are all roots of the equation such that α_{j} is a k_{j}-multiple root, then we have

$$
k_{1}+k_{2}+\ldots=r,
$$

and the homogenous solution has r unknowns which can be found by boundary conditions

Linear Recurrence Relations

- Ex : To solve

$$
a_{n}+6 a_{n-1}+12 a_{n-2}+8 a_{n-3}=0
$$

- The homogeneous solution is :

$$
\left(A_{1} n^{2}+A_{2} n+A_{3}\right)(-2)^{n}
$$

so that we can solve for A_{1}, A_{2}, A_{3} by boundary conditions

Linear Recurrence Relations

- Ex: Evaluate the $n \times n$ determinant

$$
\left|\begin{array}{ccccccccccc}
2 & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & \ldots & 0 & 0 & 0 & 0 & 0 \\
. . & . . & . . & . . & . . & \ldots & . . & . . & . . & . . & . . \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 2
\end{array}\right|
$$

Linear Recurrence Relations

- Ex: The Tower of Hanoi We are given a tower of n discs, initially stacked in decreasing size on one of the 3 pegs :

Linear Recurrence Relations

- Objective : Move entire tower to another peg
- Restrictions :

1. Move only one disc at a time, and 2. Never move a large one onto a smaller one

- Question: What is the minimum \# of moves?

Solution by Generating Functions

Solution by GF

- Let us revisit an old problem

Consider n ovals in the plane, where any two ovals intersect at exactly two points, and no three ovals intersect at the same point
Q: How many regions do they divide the plane ?

Solution by GF

- Let $a_{n}=$ number of regions divided by n ovals
- Then we have $a_{1}=2$, and for any $n>1$

$$
a_{n}=a_{n-1}+2(n-1)
$$

- Now, let $A(x)$ be the GF of the values of a_{n} 's:

$$
A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

and for consistency, we assume $a_{0}=2$

- Next, we use of $A(x)$ to obtain a formula for a_{n}

Solution by GF

- Firstly, we have

$$
a_{n} x^{n}=a_{n-1} x^{n}+2(n-1) x^{n}
$$

which implies

$$
\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n}+\sum_{n=1}^{\infty} 2(n-1) x^{n}
$$

- Thus we have :

$$
A(x)-a_{0}=x A(x)+2 x^{2} /(1-x)^{2}
$$

Solution by GF

- Next by rearranging terms, we get

$$
A(x)=2 /(1-x)+2 x^{2} /(1-x)^{3}
$$

- It follows that

$$
\begin{aligned}
a_{n} & =2+2 \times C(-3, n-2)(-1)^{n-2} \\
& =2+2 \times n(n-1) / 2 \\
& =2+n(n-1)
\end{aligned}
$$

Solution by GF

- In the previous derivation, we have set $a_{0}=2$ so that the formula

$$
a_{n}=a_{n-1}+2(n-1)
$$

can be applied even for $n=1$

- Indeed, we can set a_{0} to any arbitrary constant and the above method for solving a_{n} still work
- But we will need some adjustments since the formula is no longer valid for $n=1$

Solution by GF

- Let us set $a_{0}=5$ (an arbitrary constant)
- Then we have :

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=\sum_{n=2}^{\infty} a_{n-1} x^{n}+\sum_{n=2}^{\infty} 2(n-1) x^{n}
$$

- Thus we have :

$$
A(x)-a_{1} x-a_{0}=x\left(A(x)-a_{0}\right)+2 x^{2} /(1-x)^{2}
$$

Solution by GF

- Then by rearranging terms, we get

$$
A(x)=2 x /(1-x)+2 x^{2} /(1-x)^{3}+5
$$

- It follows that

$$
a_{n}= \begin{cases}5 & n=0 \\ n(n-1)+2 & n=1,2,3, \ldots\end{cases}
$$

Solution by GF

- We next revisit another old problem

Consider all n-digit quaternary strings.
How many of them contains even \# of 0 's?

- Let $a_{n}=\#$ of n-digit strings with even 0's
- Previously, we have used combinatorial arguments or exponential GF to find a_{n}
- We now find a_{n} by first deriving a recurrence relation for a_{n}, and solve the relation using GF

Solution by GF

- Firstly, an n-digit string with even 0 's can be obtained in one of the following ways :

1. Obtain an $(n-1)$-digit string with even 0 's, and append either 1,2,3 at its end ;
2. Obtain an $(n-1)$-digit string with odd 0 's, and append 0 at its end

- Thus for $n>1$,

$$
a_{n}=3 a_{n-1}+\left(4^{n-1}-a_{n-1}\right)
$$

Solution by GF

- After simplification, we get

$$
a_{n}-2 a_{n-1}=4^{n-1}
$$

- Since $a_{1}=3$, we set $a_{0}=1$ so that the recurrence also holds for $n=1$, and thus obtain :

$$
\sum_{n=1}^{\infty} a_{n} x^{n}-\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}=\sum_{n=1}^{\infty} 4^{n-1} x^{n}
$$

Solution by GF

- Consequently, we have

$$
A(x)-1-2 x A(x)=x /(1-4 x)
$$

- By rearranging terms, we get

$$
\begin{aligned}
A(x) & =\frac{1}{1-2 x}\left(1+\frac{x}{1-4 x}\right) \\
& =\frac{1 / 2}{1-2 x}+\frac{1 / 2}{1-4 x}
\end{aligned}
$$

Solution by GF

- This immediately shows that

$$
a_{n}=\frac{1}{2} 2^{n}+\frac{1}{2} 4^{n}
$$

Solution by GF

- A challenging problem

Consider all n-digit quaternary strings.
How many of them contains even \# of 0's and even \# of 1's?

- Let $b_{n}=\#$ of n-strings with even 0's and even 1's
$c_{n}=\#$ of n-strings with even 0's and odd 1's
$d_{n}=\#$ of n-strings with odd 0 's and even 1's

Solution by GF

- Thus for $n>1$, we have :

$$
\begin{aligned}
& b_{n}=2 b_{n-1}+c_{n-1}+d_{n-1} \\
& c_{n}=b_{n-1}+2 c_{n-1}+4^{n-1}-b_{n-1}-c_{n-1}-d_{n-1} \\
& d_{n}=b_{n-1}+2 d_{n-1}+4^{n-1}-b_{n-1}-c_{n-1}-d_{n-1}
\end{aligned}
$$

- After simplification, we have :

$$
\begin{aligned}
& b_{n}=2 b_{n-1}+c_{n-1}+d_{n-1} \\
& c_{n}=c_{n-1}-d_{n-1}+4^{n-1} \\
& d_{n}=d_{n-1}-c_{n-1}+4^{n-1}
\end{aligned}
$$

Solution by GF

- Since we can choose b_{0}, c_{0}, d_{0} arbitrarily without affecting the result, we shall set

$$
b_{0}=3 / 4, c_{0}=1 / 4, d_{0}=1 / 4
$$

so that the previous recurrences is also valid for $n=1$ (In fact, there are other sets of $\left.b_{0}, c_{0}, d_{0}\right)$

- Next, we shall multiply both sides by x^{n} and obtain the sum for all $n \geq 1$
- That is, we sum all the valid cases

Solution by GF

- Consequently, we obtain :

$$
\begin{aligned}
& B(x)-3 / 4=2 x B(x)+x C(x)+x D(x) \\
& C(x)-1 / 4=x C(x)-x D(x)+x /(1-4 x) \\
& D(x)-1 / 4=x D(x)-x C(x)+x /(1-4 x)
\end{aligned}
$$

- Solving the above, we get :

$$
\begin{aligned}
C(x) & =D(x)=1 / 4 /(1-4 x) \\
B(x) & =1 / 4 /(1-4 x) \quad+1 / 2 /(1-2 x) \\
\Rightarrow \quad b_{n} & =1 / 44^{n}+1 / 22^{n}
\end{aligned}
$$

