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Introduction
* Consider the sequence (1, 3, 9, 27, 81, ...)

» We can describe the sequence by
a, = 3"

 Alternatively, we can describe the sequence by
expressing the nth term with the (n - 1)st term,
together with the specification of the 1st term :

a,=3a,; , g=1




| ntroduction

 For asequence (a,, a,, &,, ...), an equation that
relates a, to some of its predecessor iscalled :
recurrence relation or difference equation

* To start the computation, one must know several

numbers in the sequence. These numbers are
called the boundary conditions

* EX: a =3a,, < recurrencerelation
a,=1 < boundary condition



| ntroduction

* Ex: Consider the Fibonacci sequence
(1,1,2,3,5,8,13,21, ...)

* The sequence can be described by the
recurrence relation:
=1t o
boundary conditions:
=1, ay=1



| ntroduction

* EX: Let there be n ovalsin the plane.

Suppose that any two ovals intersect at
exactly two points, and no three ovals
INntersect at the same point

Q: How many regions do they divide the plane ?

e



| ntroduction

» Let a, = number of regions divided by novals
 Suppose we have already drawn n— 1 ovals
* The nth oval will be divided into 2(n-1) arcs

> a,=a, 1 +2(n-1)

» Together with the boundary condition a, = 2,
we can further compute

a,=4, a,=8, a,=14, a, =22, a;=32, ...



| ntroduction

* In many cases obtaining the recurrence isabig
step towards the solution to a counting problem

* Thisis because even if we do not know the
general expression, we can still compute the
desired term a, by a step-by-step approach

» Of courseit isbetter if we can really obtain a
general expression for a,; inthefollowing, we
shall discuss afew ways of doing so



Linear Recurrence Relations
with Constant Coefficients



Linear Recurrence Relations

* A recurrencerelation of theform:

Cotn+ Cia, +...+ Ca,  =1(n)

IS called alinear recurrence relation with
constant coefficients, where all C’s are constants

« Ex: 3a,—5a, ,+2a , = nN°+5



Linear Recurrence Relations

» If r consecutiveterms, say a. ., &5, ..., &y, AE
known, then any a_ can be calculated recursively

* Thisimpliesthat :
Solution to the linear recurrence Is determined
uniquely by these r boundary conditions

* Indeed, we shall seethat :

General form of the solution (when boundary
conditions not fixed) has r unknown constants




Linear Recurrence Relations

* Let usbegin with asimple example
* Suppose we know that

a,+a,; = 2n+1

» By observation, we may see that
a=n+1
satisfies the above relation



Linear Recurrence Relations

« However, If we consider asimilar recurrence

a,+ta,; =0

we may nhotice that for any constant A
a, = Ax (-1)"
satisfies the above relation



Linear Recurrence Relations

» Consequently, we see that for any A,
a,=n+1+Ax(-1)

will satisfy the original recurrence

a,+a,, = 2n+1

* |f somehow we know the boundary condition,
we can determine the value of A exactly

« Ex: If a,=8, then A=7



Linear Recurrence Relations

e Let usreview what we have done

* |n the above computation, we first find out a
particular case where

a,+a,, = 2n+1

to obtain a=n+1

* Thisiscalled aparticular solution to the
recurrence



Linear Recurrence Relations

* Next, we set the right side of the recurrence to 0.

a,+ta,; =0

By solving this new recurrence, we obtain
a,= A x (1)

* Thisiscalled the homogeneous solution to the
recurrence



Linear Recurrence Relations

* The particular solution and the homogeneous
solution together allow usto obtain a general
(total) solution to the original recurrence:

a=n+1+Ax(-1)"

* Finally, we resolve the unknowns based on the
boundary conditions, and obtain the exact
solution to the recurrence relation



Linear Recurrence Relations

* The particular solution is usually found by
clever “guessing”

e Ex: Tosolve

a,+2a,,; = n+3

a reasonable guessisthat
a, = Bn+D
for some constants B and D



Linear Recurrence Relations

e Ex: Tosolve

8,~8,; = N+3

a reasonable guessisthat
a,= Bn+Dn+E

for some constants B, D, and E



Linear Recurrence Relations

e Ex: Tosolve

a,+ 28, +8,,= 2"

a reasonable guessisthat
a, = B« 2"

for some constant B



Linear Recurrence Relations

* The homogeneous solution can be found by a
systematic way

e To solve

COan T C1an—1 T...T Cran—r — O

we first create a characteristic equation :

CX+Cx1+..+C =0




Linear Recurrence Relations

* SuUppose o Isaroot to the characteristic equation.
Then we see that for any constant A

a, = Aa"

IS a homogeneous solution, because

C, (Ao + C,(Aa™) + ...+ C. (Aa™") =0




Linear Recurrence Relations

Extending the previous arguments, if the
characteristic equation hasr distinct roots,

denoted by o, a.,, ..., .
Then we seethat for any A, A, ..., A

a =Ao"+Au0"+...+Aa"

IS a homogeneous solution



Linear Recurrence Relations

e Ex: Therecurrence relation for Fibonacci
sequencels:

8, 8y 1+ 8y

This gives the characteristic equation :

X2—x—1=0




Linear Recurrence Relations

* Thetwo roots of the characteristic equation are:

o — 1+\/5 . B:
2 2

Thus the homogeneous solution Is:

a, = Aa"+ Bfg"

< Thisis also the total solution

since the particular solutionisO




Linear Recurrence Relations

» Becausea,=1anda, =1, we have

1= A+B, 1=Aa+ BB

hus, we can solve A and B, and finally obtain

_1 {1+¢5}””_ 1 {145}”*1
U5 2 5L 2




Linear Recurrence Relations

e Ex: Evauatethen x n determinant

O 0 0 0 O
O 0 0 0 O
O 0 0 0 O
O 0 0 0 O

1 1 0 0 O
1 1 1 0 O
O 1 1 1 O
O 0 1 1 1

O 1 1 1 O
O 0 1 1 1
O 0 0 1 1

O 0 0 0 O
O 0 0 0 O
O 0 0 0 O




Linear Recurrence Relations

» Leta, = thevalueof n x ndeterminant

* By expanding the determinant with respect to
the first column, we get

1000..00000
1110..00000

_ 0111..00000

ad,= A, 1 — e e e e e r n-1
0000..01110
0000..00111
0000..00011
~— 'l —




Linear Recurrence Relations

* Next by expanding the remaining determinant
with respect to the first row, we get

&y = Ay 1~ Ay

This gives the characteristic equation :

X*-X+1=0




Linear Recurrence Relations

* Thetwo roots of the characteristic equation are:

o= 1++/3] B= 1-+/3i

2 2

Thus the homogeneous solution Is:

a, = Aa"+ Bfg"

< Thisis also the total solution

since the particular solutionisO




Linear Recurrence Relations

* Since we are dealing with complex numbers, it
IS more convenient to express it in polar form :

T .. 1T
B: COS— — 19N+

— cos7t +isin£
4= 3 3

3 3’

hus the homogeneous solution becomes :

A(:o:~;n—n+"n—7T cos sin
3 T1sng + B 5 ~ 18N




Linear Recurrence Relations

» Becausea, =1 and a, = 0, we can solve A and
B, and finally obtain




Linear Recurrence Relations

* Observe: Thereisno | intheexpression for a,

* Reason: All coefficients in the recurrence,
and the boundary conditions, are real

* Thuswe may at the beginning assume that

a = Dcosn—7t + Esinn—7T
3 3

for some real numbers D and E, and solve for them



Linear Recurrence Relations

« S0 far, we have only considered the case where
the characteristic equation has distinct roots.

 What If aroot o Isadouble root ?
» We shall seethat apart from a, = Aa",
a,=Bna"
IS also a homogeneous solution



Linear Recurrence Relations
* First, we observethat o 1Saroot to

Conxr1+ C, (1) x2+ ...+ C (n-r)xm"1=0

0 that

Cona™t+C, (1) a2+ ..+ C (n-r)a™"1=0

* Consequently, thisimplies
a,=Bna™ (or Bna")
IS a homogeneous solution




Linear Recurrence Relations

» Extending the previous arguments, If o Isak-
multiple root of the characteristic equation, then

a,= (A nk+ A<t + 4+ A )an
IS a homogeneous sol ution

 Further, If a,, a,, ... areall roots of the equation
such that o Is a k-multiple root, then we have

K+ K+ ...=r1,
and the homogenous solution has r unknowns
which can be found by boundary conditions



| 1near Recurrence Ralations
e Ex: Tosolve

a,+6a,,+12,,+8a, ;= 0

* The homogeneous solution is:
(ALn®+ Apn + Ag) (=2)
so that we can solve for A, A,, A; by boundary
conditions



Linear Recurrence Relations

e Ex: Evauatethen x n determinant

O 0 0 0 O
O 0 0 0 O
O 0 0 0 O
O 0 0 0 O

2 1 0 0 O
1 2 1 0 O
O 1 2 1 O
O 01 2 1

O 1 2 1 O
O 0 1 2 1
O 0 0 1 2

O 0 0 0 O
O 0 0 0 O
O 0 0 0 O




Linear Recurrence Relations

e Ex: The Tower of Hanoi

We are given atower of ndiscs, initially
stacked in decreasing size on one of the 3 pegs.:




Linear Recurrence Relations

* Objective : Move entire tower to another peg
* Restrictions:

1. Moveonly onedisc at atime, and
2. Never move alarge one onto a smaller one
e Question: What isthe minimum # of moves ?

a1 |



Solution by Generating Functions



Solution by GF

* Letusrevisit an old problem

Consider n ovalsin the plane, where any two
ovalsintersect at exactly two points, and no
three ovals intersect at the same point

Q: How many regions do they divide the plane ?

R



Solution by GF

Let a, = number of regions divided by n ovals
Thenwehavea, =2, andforany n>1

a,=a, 1 +2(n-1)
Now, let A(X) be the GF of thevaluesof a,’s:

A(X) = ayt+ax+axi+ay+ ...

and for consistency, we assume a, = 2
Next, we use of A(x) to obtain aformulafor a,



Solution by GF

* Firstly, we have
ax"=a X"+2(n-1)x"
which implies

* Thuswe have:

A(X) —a, = XAX) + 2¢2 [ (1- X)?




Solution by GF

* Next by rearranging terms, we get

e [tfO

AX) = 2/ (1-x) +2x¢/ (1-x)3

lows that

a,= 2+ 2xC(-3,n-2) (-1)"?
=2+ 2xn(h-1)/2
=2+ n(n-1)




Solution by GF

* |nthe previous derivation, we have set a,= 2 so
that the formula

a,=a,,+2(n-1)
can be applied evenforn=1

* Indeed, we can set a, to any arbitrary constant
and the above method for solving a, still work

» But we will need some adjustments since the
formulaisno longer validforn=1



Solution by GF

» Letusset a, =5 (an arbitrary constant)
* Then we have:

nZZ anx” B nZ: zan_lxn * nZ: 22(ﬂ _1) X

* Thuswe have:

A(X) —ax—ay = X ( A(X) —a,) + 2x2/ (1- X)?




Solution by GF

* Then by rearranging terms, we get

AX) = 2x/ (1-X) +2x¢/ (1-X)3+ 5

e |t follows that

- { 5 n=0
I = n(n_1)+2 n=1223,...




Solution by GF

We next revisit another old problem

Consider all n-digit quaternary strings.
How many of them contains even # of 0’s?

Let a, = # of n-digit strings with even 0’s
Previously, we have used combinatorial
arguments or exponential GF to find a,

We now find a,, by first deriving arecurrence
relation for a,, and solve the relation using GF



Solution by GF

 Firstly, an n-digit string with even 0’s can be
obtained in one of the following ways:
1. Obtain an (n— 1)-digit string with even 0’s,
and append either 1, 2, 3at itsend ;
2. Obtain an (n— 1)-digit string with odd 0’s,
and append O at its end
 Thusforn>1,

a, = 3a,,+ (4" -a,,)




Solution by GF

» After smplification, we get

a8, —28,, = 4"

« Since a, = 3, we set a, = 1 so that the recurrence
also holdsfor n=1, and thus obtain :

Z aan _ Z Zan_lxn — Z An-1 yn
n=1 n=1 n=1




Solution by GF

» Consequently, we have

A(X) —1—-2xA(X) = x/(1-4X)

* By rearranging terms, we get

1 X
A(X 1+
%) 1—2x{ 1—4x}

1/2 1/2
+

12X 1—4x




Solution by GF

* Thisimmediately shows that

i2n+i
2 2

a, = a




Solution by GF
A challenging problem

Consider all n-digit quaternary strings.
How many of them contains even # of 0’s and
even# of 1°s?

» Letb, = #of n-stringswith even 0’sand even 1’s
C, = #of n-stringswith even 0’sand odd 1’s
d, = # of n-strings with odd 0’sand even 1’s




Solution by GF

e Thusforn>1, we have:
bn - 2bm1+ Ch1 + dml

Cn bml T 2Cm1 + 401 bml_ C
d

n-1 dml
n bml T 2dm1 + 401 bml_ le_ dml

« After smplification, we have:
bn - 2bm1+ Cha T dml
Ch = Cha — dml + 4
d =4d,-c¢ 4, + 4™



Solution by GF

» Since we can choose b, ¢,, d, arbitrarily
without affecting the result, we shall set

o = Y4, Cq=Ya, dy="Ya
so that the previous recurrences is also valid for
n=1 (Infact, there are other sets of b,, c,, d,)

* Next, we shall multiply both sides by x"and
obtanthesumforaln >1

 That is, we sum all the valid cases



Solution by GF
» Consequently, we obtain :
B(X) — % = 2xB(X) + X C(X) + X D(X)
C(X) —Ya = xC(X) —xD(X) + x/ (1 —4x)
D(X) — % = xD(X) —xC(X) + x/ (1-4x)

 Solving the above, we get :
C(x) = D(X) = ¥4/ (1-4x)
B(X) = ¥ /(1-4x) + %2/ (1-2X)
2> b = Va4 +1L2"



